School of Engineering
Showing 221-240 of 477 Results
-
Yuchen Mei
Ph.D. Student in Electrical Engineering, admitted Autumn 2023
BioYuchen Mei is an EE Ph.D. student at Stanford University in Prof. Priyanka Raina's group. He received a B.S. degree in Electronic Information Science and Technology from Nanjing University (China) in 2021 and a M.S. degree in Electrical Engineering from Stanford in 2023. He is interested in digital VLSI design, domain-specific accelerators, and design automation.
-
Celeste Melamed
Postdoctoral Scholar, Materials Science and Engineering
BioCeleste Melamed is a postdoctoral scholar with the Chueh group at Stanford. Her interests include ionics, structural chemistry and transport, and materials by design, with the overarching goal of a sustainable energy economy. She is currently developing thin film synthetic methods to investigate interfacial structure and evolution in solid-state battery materials. She received her PhD in Materials Science at Colorado School of Mines and the National Renewable Energy Laboratory in 2021, where she investigated the interplay between local and long-range structure in new ternary nitrides for optoelectronic applications. She received a B.S. in Physics from Harvey Mudd College in 2015.
-
L. Julian Mele
Postdoctoral Scholar, Materials Science and Engineering
BioJulian graduated in electrical engineering and received his PhD from the University of Udine (Italy). During his PhD, he worked on electrochemical modeling of performance and noise for electronic biosensors and bioactuators. Then he continued as a postdoctoral scholar in Prof. Palestri’s group, where he focused on modeling and simulations of conjugated polymers for bioelectronic applications. He joined Prof. Salleo's group in the fall of 2022 where he is contributing to the understanding of the physical operation of organic devices.
-
Nicholas Melosh
Professor of Materials Science and Engineering
BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.
Research Interests:
Bio-inorganic Interface
Molecular materials at interfaces
Self-Assembly and Nucleation and Growth