School of Engineering
Showing 1-50 of 242 Results
-
Ross Alexander
Ph.D. Student in Aeronautics and Astronautics, admitted Winter 2021
BioRoss is a second-year Ph.D. Candidate in Aeronautics & Astronautics at Stanford University and is a recipient of the Stanford Graduate Fellowship (SGF) in Science & Engineering. He is a researcher in the Stanford Intelligent Systems Lab (SISL), researching principled methods for algorithmic decision making under uncertainty utilizing approaches involving statistical machine learning and artificial intelligence. Ross’s research has led to international collaborations on topics spanning autonomous driving, multidisciplinary design optimization, and COVID-19. Ross has designed and taught several short artificial intelligence courses for middle and high school students and he has also served as a teaching assistant for various engineering, mathematics, and computer science courses at both the undergraduate and graduate levels.
Ross earned his Bachelor of Science in Aerospace Engineering from Texas A&M University in 2019. In his four years at Texas A&M, Ross developed a strong technical background through his work in trajectory modeling & simulation and propulsion system design on the Texas A&M University Sounding Rocketry Team and also through internships at aerospace research & development (R&D) companies. -
Juan Alonso
Vance D. and Arlene C. Coffman Professor
BioProf. Alonso is the founder and director of the Aerospace Design Laboratory (ADL) where he specializes in the development of high-fidelity computational design methodologies to enable the creation of realizable and efficient aerospace systems. Prof. Alonso’s research involves a large number of different manned and unmanned applications including transonic, supersonic, and hypersonic aircraft, helicopters, turbomachinery, and launch and re-entry vehicles. He is the author of over 200 technical publications on the topics of computational aircraft and spacecraft design, multi-disciplinary optimization, fundamental numerical methods, and high-performance parallel computing. Prof. Alonso is keenly interested in the development of an advanced curriculum for the training of future engineers and scientists and has participated actively in course-development activities in both the Aeronautics & Astronautics Department (particularly in the development of coursework for aircraft design, sustainable aviation, and UAS design and operation) and for the Institute for Computational and Mathematical Engineering (ICME) at Stanford University. He was a member of the team that currently holds the world speed record for human powered vehicles over water. A student team led by Prof. Alonso also holds the altitude record for an unmanned electric vehicle under 5 lbs of mass.
-
Manan Arya
Assistant Professor of Aeronautics and Astronautics
Current Research and Scholarly InterestsManan Arya leads the Morphing Space Structures Laboratory. His research is on structures that can adapt their shape to respond to changing requirements. Examples include deployable structures for spacecraft that can stow in constrained volumes for launch and then unfold to larger sizes in space, terrestrial structures with variable geometry, and morphing robots. Key research thrusts include lightweight fiber-reinforced composite materials to enable innovative designs for flexible structures, and the algorithmic generation of the geometry of morphing structures – the arrangement of stiff and compliant elements – to enable novel folding mechanisms.
He has published more than 20 journal and conference papers and has been awarded 5 US patents. Prior to joining Stanford, he was a Technologist at the Advanced Deployable Structures Laboratory at the Jet Propulsion Laboratory, California Institute of Technology, where he developed and tested breakthrough designs for space structures, including deployable reflectarrays, starshades, and solar arrays. -
Juan Blanch
Sr Research Engineer
Current Research and Scholarly InterestsMy research focuses on the design of navigation integrity algorithms for safety critical applications (like air navigation and autonomous driving). I am interested in both the design of practical algorithms that provide the required safety margins, and in the theoretical limits on the performance of the integrity monitoring algorithms.
-
Brian Cantwell
Edward C. Wells Professor in the School of Engineering and Professor of Mechanical Engineering, Emeritus
BioProfessor Cantwell's research interests are in the area of turbulent flow. Recent work has centered in three areas: the direct numerical simulation of turbulent shear flows, theoretical studies of the fine-scale structure of turbulence, and experimental measurements of turbulent structure in flames. Experimental studies include the development of particle-tracking methods for measuring velocity fields in unsteady flames and variable density jets. Research in turbulence simulation includes the development of spectral methods for simulating vortex rings, the development of topological methods for interpreting complex fields of data, and simulations of high Reynolds number compressible and incompressible wakes. Theoretical studies include predictions of the asymptotic behavior of drifting vortex pairs and vortex rings and use of group theoretical methods to study the nonlinear dynamics of turbulent fine-scale motions. Current projects include studies of fast-burning fuels for hybrid propulsion and decomposition of nitrous oxide for space propulsion.
-
Fu-Kuo Chang
Professor of Aeronautics and Astronautics
BioProfessor Chang's primary research interest is in the areas of multi-functional materials and intelligent structures with particular emphases on structural health monitoring, intelligent self-sensing diagnostics, and multifunctional energy storage composites for transportation vehicles as well as safety-critical assets and medical devices. His specialties include embedded sensors and stretchable sensor networks with built-in self-diagnostics, integrated diagnostics and prognostics, damage tolerance and failure analysis for composite materials, and advanced multi-physics computational methods for multi-functional structures. Most of his work involves system integration and multi-disciplinary engineering in structural mechanics, electrical engineering, signal processing, and multi-scale fabrication of materials. His recent research topics include: Multifunctional energy storage composites, Integrated health management for aircraft structures, bio-inspired intelligent sensory materials for fly-by-feel autonomous vehicles, active sensing diagnostics for composite structures, self-diagnostics for high-temperature materials, etc.
-
Richard Christensen
Professor (Research) of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus
BioProfessor Christensen's research is concerned with the mechanics of materials. The behavior of polymers and polymeric fiber composites are areas of specialization. Of particular interest is the field of micro-mechanics that focuses on materials' functionality at intermediate-length scales between atomic and the usual macro scale. Applicable techniques involve the methods of homogenization for all types of composite materials. The intended outcomes of his research are useful means of characterizing the yielding, damage accumulation, and failure behavior of modern materials. A related website has been developed to provide critical evaluations for the mathematical failure criteria used with the various classes of engineering materials. Most of these materials types are employed in aerospace structures and products.
-
Matthew Clarke
Ph.D. Student in Aeronautics and Astronautics, admitted Spring 2017
BioMatthew Clarke is a Ph.D. candidate in the Department of Aeronautics and Astronautics. He is a Tau Beta Pi Fellow and holds an M.S. in AA from Stanford and B.S. in Mechanical Engineering from Howard University. His research focuses on aircraft design with an emphasis on the analysis and optimization of vehicles for regional and urban air mobility. His work also encompasses system modeling of novel battery technologies for electric propulsion applications. Outside of his doctoral work, Matthew dedicates his time to addressing issues surrounding underrepresented minority matriculation and retention in STEM fields, serving as both graduate student recruiter for the School of Engineering and a mentor through the Office of the Vice Provost for Graduate Education. Matthew is a former president of the Black Engineering Graduate Student Association, and a member of the American Society of Mechanical Engineers (ASME); the American Institute of Aeronautics and Astronautics (AIAA), and the National Society of Black Engineers (NSBE).
-
Sigrid Close
Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering
BioProf. Close's research involves space weather detection and modeling for improved spacecraft designs, and advanced signal processing and electromagnetic wave interactions with plasma for ground-to-satellite communication systems. These topics fall under the Space Situational Awareness (SSA) umbrella that include environmental remote sensing using satellite systems and ground-based radar. Her current efforts are the MEDUSSA (Meteoroid, Energetics, and Debris Understanding for Space Situational Awareness) program, which uses dust accelerators to understand the effects of hypervelocity particle impacts on spacecraft along with Particle-In-Cell simulations, and using ground-based radars to characterize the space debris and meteoroid population remotely. She also has active programs in hypersonic plasmas associated with re-entry vehicles.