School of Engineering


Showing 1-50 of 77 Results

  • Sanjiva Lele

    Sanjiva Lele

    Professor of Aeronautics and Astronautics and of Mechanical Engineering

    BioProfessor Lele's research combines numerical simulations with modeling to study fundamental unsteady flow phemonema, turbulence, flow instabilities, and flow-generated sound. Recent projects include shock-turbulent boundary layer interactions, supersonic jet noise, wind turbine aeroacoustics, wind farm modeling, aircraft contrails, multi-material mixing and multi-phase flows involving cavitation. He is also interested in developing high-fidelity computational methods for engineering applications.

  • Charbel Farhat

    Charbel Farhat

    Vivian Church Hoff Professor of Aircraft Structures, Professor of Mechanical Engineering and Director of the Army High Performance Computing Research Center

    Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design and analysis of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on the nonlinear aeroelasticity and flight dynamics of Micro Aerial Vehicles (MAVs) with flexible flapping wings and N+3 aircraft with High Aspect Ratio (HAR) wings, layout optimization and additive manufacturing of wing structures, supersonic inflatable aerodynamic decelerators for Mars landing, and underwater acoustics. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-physics problems, high-order embedded boundary methods, uncertainty quantification, and efficient model-order reduction for time-critical applications such as design and active control.

  • Antony Jameson

    Antony Jameson

    Professor (Research) of Aeronautics and Astronautics

    BioProfessor Jameson's research focuses on the numerical solution of partial differential equations with applications to subsonic, transonic, and supersonic flow past complex configurations, as well as aerodynamic shape optimization.

  • Fu-Kuo Chang

    Fu-Kuo Chang

    Professor of Aeronautics and Astronautics and, by courtesy, of Mechanical Engineering

    BioProfessor Chang's primary research interest is in the areas of multi-functional materials and intelligent structures with particular emphases on structural health monitoring, intelligent self-sensing diagnostics, and integrated health management for space and aircraft structures as well safety-critical assets and medical devices. His specialties include sensors and sensor network development, built-in self-diagnostics,  integrated diagnostics and prognostics, damage tolerance and failure analysis for composite materials, and advanced multi-physics computational methods for multi-functional structures. Most of his work involves system integration and multi-disciplinary engineering in structural mechanics, electrical engineering, signal processing, and multi-scale fabrication of materials. His recent research topics include: Integrated health management for aircraft structures, bio-inspired intelligent sensory materials for fly-by-feel autonomous vehicles, active sensing diagnostics for composite structures, self-diagnostics for high-temperature materials, etc.

  • Stephen Tsai

    Stephen Tsai

    Professor (Research) of Aeronautics and Astronautics, Emeritus

    BioProfessor Tsai's research interest is in the development of design methodology of composite materials and structures. As an emerging technology, composite materials offer unique performances for structures that combine light weight with durability. Keys to the successful utilization of composite materials are predictability in performance and cost effective design of anisotropic, laminated structures. Current emphasis is placed on the understanding of failure modes, and computer simulation for design and cost estimation.

  • Juan J. Alonso

    Juan J. Alonso

    Professor of Aeronautics and Astronautics

    BioProf. Alonso is the founder and director of the Aerospace Design Laboratory (ADL) where he specializes in the development of high-fidelity computational design methodologies to enable the creation of realizable and efficient aerospace systems. Prof. Alonso’s research involves a large number of different manned and unmanned applications including transonic, supersonic, and hypersonic aircraft, helicopters, turbomachinery, and launch and re-entry vehicles. He is the author of over 200 technical publications on the topics of computational aircraft and spacecraft design, multi-disciplinary optimization, fundamental numerical methods, and high-performance parallel computing. Prof. Alonso is keenly interested in the development of an advanced curriculum for the training of future engineers and scientists and has participated actively in course-development activities in both the Aeronautics & Astronautics Department (particularly in the development of coursework for aircraft design, sustainable aviation, and UAS design and operation) and for the Institute for Computational and Mathematical Engineering (ICME) at Stanford University. He was a member of the team that currently holds the world speed record for human powered vehicles over water. A student team led by Prof. Alonso also holds the altitude record for an unmanned electric vehicle under 5 lbs of mass.

  • Per Enge

    Per Enge

    Vance D. and Arlene C. Coffman Professor and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsProfessor Enge's designs navigation systems that are safe and secure. These navigation systems must detect feared events that threaten to introduce hazardous position errors.

  • Ilan Kroo

    Ilan Kroo

    Thomas V. Jones Professor in the School of Engineering

    BioProfessor Kroo's research involves work in three general areas: multidisciplinary optimization and aircraft synthesis, unconventional aircraft, and low-speed aerodynamics. Current research in the field of aircraft synthesis, sponsored by NASA and industry, includes the development of a new computational architecture for aircraft design, and its integration with numerical optimization. Studies of unconventional configurations employ rapid turnaround analysis methods in the design of efficient subsonic and supersonic commercial aircraft. Recent research has included investigation of configurations such as joined wings, oblique wings, and tailless aircraft. Nonlinear low-speed aerodynamics studies have focused on vortex wake roll-up, refined computation of induced drag, the design of wing tips, and the aerodynamics of maneuvering aircraft.

  • Todd Walter

    Todd Walter

    Sr Research Engineer, Aeronautics and Astronautics

    Current Research and Scholarly InterestsHigh integrity satellite navigation for guiding aircraft, including satellite based augmentation systems (SBAS) and advanced receiver autonomous integrity monitoring (ARAIM).

  • R. Eric Phelts

    R. Eric Phelts

    Engr Res Assoc, Aeronautics and Astronautics

    BioR. Eric Phelts is a research engineer in the Department of Aeronautics and Astronautics at Stanford University. His research involves signal monitoring techniques and analysis for SBAS, GBAS, and ARAIM.

  • Brian Cantwell

    Brian Cantwell

    Edward C. Wells Professor in the School of Engineering and Professor of Mechanical Engineering

    BioProfessor Cantwell's research interests are in the area of turbulent flow. Recent work has centered in three areas: the direct numerical simulation of turbulent shear flows, theoretical studies of the fine-scale structure of turbulence, and experimental measurements of turbulent structure in flames. Experimental studies include the development of particle-tracking methods for measuring velocity fields in unsteady flames and variable density jets. Research in turbulence simulation includes the development of spectral methods for simulating vortex rings, the development of topological methods for interpreting complex fields of data, and simulations of high Reynolds number compressible and incompressible wakes. Theoretical studies include predictions of the asymptotic behavior of drifting vortex pairs and vortex rings and use of group theoretical methods to study the nonlinear dynamics of turbulent fine-scale motions. Current projects include studies of fast-burning fuels for hybrid propulsion and decomposition of nitrous oxide for space propulsion.

  • Stephen Rock

    Stephen Rock

    Professor of Aeronautics and Astronautics

    BioProfessor Rock's research interests include the application of advanced control and modeling techniques for robotic and vehicle systems (aerospace and underwater). He directs the Aerospace Robotics Laboratory in which students are involved in experimental programs designed to extend the state-of-the-art in robotic control. Areas of emphasis include planning and navigation techniques (GPS and vision-based) for autonomous vehicles; aerodynamic modeling and control for aggressive flight systems; underwater remotely-operated vehicle control; precision end-point control of manipulators in the presence of flexibility and uncertainty; and cooperative control of multiple manipulators and multiple robots. Professor Rock teaches several courses in dynamics and control.

  • Sanjay Lall

    Sanjay Lall

    Professor of Electrical Engineering and of Aeronautics and Astronautics

    BioSanjay Lall is Professor of Electrical Engineering in the Information Systems Laboratory and Professor of Aeronautics and Astronautics at Stanford University. He received a B.A. degree in Mathematics with first-class honors in 1990 and a Ph.D. degree in Engineering in 1995, both from the University of Cambridge, England. His research group focuses on the development of advanced engineering methodologies for the design of control, optimization and signal processing algorithms which occur in a wide variety of electrical, mechanical and aerospace systems. Before joining Stanford he was a Research Fellow at the California Institute of Technology in the Department of Control and Dynamical Systems, and prior to that he was a NATO Research Fellow at Massachusetts Institute of Technology, in the Laboratory for Information and Decision Systems. He was also a visiting scholar at Lund Institute of Technology in the Department of Automatic Control. He has significant industrial experience applying advanced algorithms to problems including satellite systems at Lockheed Martin, advanced audio systems at Sennheiser, Formula 1 racing, and integrated circuit diagnostic systems, in addition to several startup companies. Professor Lall has served as Associate Editor for the journal Automatica, on the steering and program committees of several international conferences, and as a reviewer for the National Science Foundation, DARPA, and the Air Force Office of Scientific Research. He is the author of over 130 peer-refereed publications.

  • Daniel DeBra

    Daniel DeBra

    Edward C. Wells Professor of Engineering, Emeritus

    BioProfessor DeBra collaborates with Stanford physicists on three projects: Gravity Probe-B (GP-B), Space Test of the Equivalence Principle (STEP), and the vibration isolation of a gravity-wave antenna (LIGO). These involve satellite control of attitude and translation and the development of instruments of extraordinary precision and accuracy. In GP-B gyroscopes were successfully orbited in 2004. They have been compared to stars to an accuracy approaching a nanoradian. In STEP the orbital performance promises improvements of a million in testing the equivalence of inertial and gravitational mass. (It is currently in a hiatus of funding.) Professor DeBra's interests in precision engineering extend to manufacturing where his students' work developing "quiet hydraulics" in the 1990s has more recently been applied to the vibration isolation of the optical systems of LIGO.

  • Debbie Senesky

    Debbie Senesky

    Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioProfessor Senesky's research is centered on the development of micro- and nano-systems for operation within extreme harsh environments. Her laboratory (EXtreme Environment Microsystems Laboratory, XLab) is researching the synthesis of temperature tolerant, chemically resistant, and radiation-hardened wide bandgap semiconductor thin films and nanostructures. These new material sets serve as a platform for the realization of sensor, actuator, and electronic components that can operate and collect data under the most hostile conditions. More specifically, smart and adaptable structures for extreme environments are enabled through the technology developed in her laboratory. Her research efforts support a variety of applications including deep space systems, hypersonic aircrafts, combustion monitoring and subsurface monitoring.

  • Richard Christensen

    Richard Christensen

    Professor (Research) of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus

    BioProfessor Christensen's research is concerned with the mechanics of materials. The behavior of polymers and polymeric fiber composites are areas of specialization. Of particular interest is the field of micro-mechanics that focuses on materials' functionality at intermediate-length scales between atomic and the usual macro scale. Applicable techniques involve the methods of homogenization for all types of composite materials. The intended outcomes of his research are useful means of characterizing the yielding, damage accumulation, and failure behavior of modern materials. A related website has been developed to provide critical evaluations for the mathematical failure criteria used with the various classes of engineering materials. Most of these materials types are employed in aerospace structures and products.

  • Bradford Parkinson

    Bradford Parkinson

    Edward C. Wells Professor in the School of Engineering, Emeritus

    BioProfessor Bradford Parkinson was the Chief Architect for GPS, and led the original advocacy for the system in 1973 as an Air Force Colonel. Gaining approval, he became the first Director of the GPS Joint Program Office and led the original development of spacecraft, Master Control Station and 8 types of User Equipment. He continued leadership of the Program through the extensive test validation Program, including being the Launch Commander for the first GPS satellite launches. This original deployment of GPS demonstrated comfortable margins against all PNT (Positioning, Navigation, and Timing) requirements.
    Earlier in his career, he was a key developer of a modernized AC-130 Gunship, introduction of which included 160 hours of combat missions. He was an instructor at the USAF Test Pilot School. In addition he led the Department of Astronautics and Computer Science at the US Air Force Academy. He retired from the US Air Force as a Colonel.
    He was appointed a Professor at Stanford University in 1984, after six years of experience in industry. At Stanford University, he led the development of many innovative applications of GPS, including:
    1.Commercial aircraft (Boeing 737) blind landing using GPS alone,
    2.Fully automatic GPS control of Farm Tractors on a rough field to an accuracy of 2 inches,
    3.Pioneering the augmentation to GPS (WAAS) that allows any user to achieve accuracies of 2 feet and very high levels of integrity assurance.
    He has been the CEO of two companies, and serves on many boards. He is the editor/author of the AIAA Award winning 2 Volumes: “GPS Theory and Applications” and is author or coauthor of over 80 technical papers.
    Among his many awards is the Draper Prize of the National Academy of Engineering, considered by some to be the “Engineering Nobel”.

  • G. Scott Hubbard

    G. Scott Hubbard

    Adjunct Professor, Aeronautics and Astronautics

    BioProfessor Hubbard's research interests include the study of both human and robotic exploration of space with a particular focus on technology and missions for planetary exploration, especially Mars. Prof. Hubbard is also an expert on the emerging entrepreneurial space industry and is the Director Emeritus of the Stanford Center of Excellence for Commercial Space Transportation (COE CST). As part of his ongoing engagement with robotic Mars missions, Prof. Hubbard serves as a member of National Academy of Science review groups and as a frequent consultant to NASA projects. Current research topics include novel hybrid propulsion for applications such as a Mars Ascent Vehicle and studying minimum cost human exploration architectures. Prof. Hubbard's commercial space research interests examine policies to enable, facilitate and promote such ventures. As the former Director of NASA's Ames Research Center, he maintains an active connection to the space exploration community. Hubbard is also the Editor-in-Chief of the peer-reviewed journal New Space.

    Brief Biography: Professor Hubbard has been engaged in space-related research as well as program, project, and executive management for more than 40 years including 20 years with NASA, culminating as Director of NASA’s Ames Research Center. He currently Chairs the SpaceX Commercial Crew Safety Advisory Panel. Hubbard served as NASA’s first Mars program director and successfully restructured the entire Mars program in the wake of mission failures. His book entitled, “Exploring Mars: Chronicles from a Decade of Discovery”, describes his work on NASA’s Mars Program. Professor Hubbard previously served as the sole NASA representative on the Columbia Accident Investigation Board and directed the impact testing that established the definitive physical cause of the accident. Hubbard was the founder of NASA’s Astrobiology Institute; conceived the Mars Pathfinder mission with its airbag landing and was the manager for NASA’s highly successful Lunar Prospector Mission. Prior to joining NASA, Professor Hubbard was a staff scientist at the Lawrence Berkeley National Laboratory and directed a high-tech start-up company. He has received many honors including NASA’s highest award, the Distinguished Service Medal. A brief video of Hubbard's career may be viewed at https://vimeo.com/172038243 .

  • Adrien Perkins

    Adrien Perkins

    Ph.D. Student in Aeronautics and Astronautics, admitted Autumn 2014

    Current Research and Scholarly InterestsAdrien is currently working on using UAVs to rapidly localize sources of GPS interference as well as successfully navigate in GPS denied environments.

  • Sigrid Close

    Sigrid Close

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioProf. Close's research involves space weather detection and modeling for improved spacecraft designs, and advanced signal processing and electromagnetic wave interactions with plasma for ground-to-satellite communication systems. These topics fall under the Space Situational Awareness (SSA) umbrella that include environmental remote sensing using satellite systems and ground-based radar. Her current efforts are the MEDUSSA (Meteoroid, Energetics, and Debris Understanding for Space Situational Awareness) program, which uses dust accelerators to understand the effects of hypervelocity particle impacts on spacecraft along with Particle-In-Cell simulations, and using ground-based radars to characterize the space debris and meteoroid population remotely. She also has active programs in hypersonic plasmas associated with re-entry vehicles.

  • Louis Dressel

    Louis Dressel

    Ph.D. Student in Aeronautics and Astronautics, admitted Autumn 2014

    BioLouis Dressel is a Ph.D. candidate in the Aeronautics and Astronautics department at Stanford University. He works with the Stanford Intelligent Systems Lab to develop control schemes for active sensing tasks. He also works with the GPS Lab on a UAV that hunts GPS jammers.

  • Ya Gai

    Ya Gai

    Ph.D. Student in Aeronautics and Astronautics, admitted Spring 2014
    Ph.D. Minor, Management Science and Engineering

    Current Research and Scholarly InterestsMy research interests focus on droplet-based microfluidics and related complex fluid problems.

  • Marco Pavone

    Marco Pavone

    Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioDr. Marco Pavone is an Assistant Professor of Aeronautics and Astronautics at Stanford University, where he also holds courtesy appointments in the Department of Electrical Engineering, in the Institute for Computational and Mathematical Engineering, and in the Information Systems Laboratory. He is a Research Affiliate at the NASA Jet Propulsion Laboratory (JPL), California Institute of Technology. Before joining Stanford, he was a Research Technologist within the Robotics Section at JPL. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. Dr. Pavone’s areas of expertise lie in the fields of controls and robotics.

    Dr. Pavone is a recipient of a NASA Early Career Faculty award, a Hellman Faculty Scholar Award, and was named NASA NIAC Fellow in 2011. At JPL, Dr. Pavone worked on the end-to-end optimization of the mission architecture for the Mars sample return mission. He has designed control algorithms for formation flying that have been successfully tested on board the International Space Station.

    Dr. Pavone is the Director of the Autonomous Systems Laboratory (ASL). The goal of ASL is the development of methodologies for the analysis, design, and control of autonomous systems, with a particular emphasis on large-scale robotic networks and autonomous aerospace vehicles. The lab combines expertise from control theory, robotics, optimization, and operations research to develop the theoretical foundations for networked autonomous systems operating in uncertain, rapidly-changing, and potentially adversarial environments. Theoretical insights are then used to devise practical, computationally-efficient, and provably-correct algorithms for field deployment. Applications include robotic transportation networks, sensor networks, agile control of spacecraft during proximity operations, and mobility platforms for extreme planetary environments. Collaborations with NASA centers are a key component of the research portfolio.

  • Simone D'Amico

    Simone D'Amico

    Assistant Professor of Aeronautics and Astronautics

    BioSimone D’Amico is an Assistant Professor of Aeronautics and Astronautics at Stanford University, California, USA. He is founder and director of the Stanford's Space Rendezvous Lab (SLAB). He is a Terman Faculty Fellow of the School of Engineering. He holds a Ph.D. in aerospace engineering from the Technical University of Delft (The Netherlands) and received his B.S. and M.S. degrees from Politecnico di Milano (Italy). He has been working as researcher at the German Aerospace Center (DLR) from 2003 to 2013 in the fields of space flight dynamics, autonomous satellite navigation and control, spacecraft formation-flying, and on-orbit servicing.

    Dr. D’Amico gave key contributions to the design, development, and operations of spacecraft formation-flying and rendezvous missions such as GRACE, TanDEM-X, and PRISMA for which he received several awards. He developed the Spaceborne Autonomous Formation Flying Experiment (SAFE), the Advanced Rendezvous demonstration using GPS and Optical Navigation (ARGON) on PRISMA and the TanDEM-X Autonomous Formation Flying (TAFF) system. More recently he has been working on the design of the GPS-based navigation system for the DEOS and PROBA-3 formation-flying missions. He acted as PI of the Autonomous Vision Approach-Navigation and Target Identification (AVANTI) experiment on-board the FireBIRD mission.

    Dr. D'Amico's current research aims at enabling future distributed space systems for unprecedented science and exploration. These include spacecraft formation-flying, rendezvous and docking, swarms and fractionated spacecraft. His efforts lie at the intersection of advanced astrodynamics, GN&C, and space system engineering to fulfill the tight requirements posed by these novel space architectures. The most recent mission concept developed by Dr. D'Amico is a miniaturized distributed occulter/telescope (mDOT) system for direct imaging of exozodiacal dust and exoplanets. Dr. D'Amico is spearheading a gravitational space science and exploration program at Stanford based on multiple drag-free micro-satellites.

    He has over 100 scientific publications including conference proceedings, peer-reviewed journal articles, and book chapters. He is peer reviewer for various AIAA and IEEE journals. He has been nominated in 2008, 2011, 2012, and 2013 as Excellent Reviewer for the AIAA Journal of Guidance, Control, and Dynamics. He has been Programme Committee Member (2008), Co-Chair (2011), and Chair (2013) of the International Symposium on Spacecraft Formation Flying Missions and Technologies. He is Programme Committee Member of the International Workshop on Satellite Constellations and Formation Flying since 2013. He is Associate Editor of the AIAA Journal of Guidance, Control, and Dynamics and the Journal of Space Science and Engineering. He is Associate Member of the Omega Alpha Association for Systems Engineering.

  • Mykel John Kochenderfer

    Mykel John Kochenderfer

    Assistant Professor of Aeronautics and Astronautics

    BioMykel Kochenderfer is Assistant Professor of Aeronautics and Astronautics at Stanford University. Prior to joining the faculty, he was at MIT Lincoln Laboratory where he worked on airspace modeling and aircraft collision avoidance, with his early work leading to the establishment of the ACAS X program. He received a Ph.D. from the University of Edinburgh and B.S. and M.S. degrees in computer science from Stanford University. Prof. Kochenderfer is the director of the Stanford Intelligent Systems Laboratory (SISL), conducting research on advanced algorithms and analytical methods for the design of robust decision making systems. Of particular interest are systems for air traffic control, unmanned aircraft, and other aerospace applications where decisions must be made in uncertain, dynamic environments while maintaining safety and efficiency. Research at SISL focuses on efficient computational methods for deriving optimal decision strategies from high-dimensional, probabilistic problem representations. He is the author of "Decision Making under Uncertainty: Theory and Application" from MIT Press. He is a third generation pilot.

  • J David Powell

    J David Powell

    Professor of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus

    BioEDUCATION:
    1960 - B.S. Mechanical Engineering, M.I.T.
    1966 - M.S. Aeronautics & Astronautics, Stanford
    1970 - Ph.D. Aeronautics & Astronautics, Stanford

    EXPERIENCE:
    1960-1961 - Engine Design and Testing Engineer at Outboard Marine Corp.
    1961-1967 – Engineer at Lockheed in the field of Aerospace Guidance and Control
    1967-1968 – Engineer at Analytical Mechanics Associates
    1968-1970 – Engineer, Systems Control, Inc. Parameter ID of aircraft models from flight data, automatic generation of approach paths for Air Traffic Control. Attended Stanford University specializing in control systems.
    1971 – 1998 – Member of the Stanford Faculty in the Aeronautics and Astronautics Department. His research has included spacecraft pointing, space tether dynamics and control, internal combustion engine control, the design of aerospace digital flight control systems, GPS-based attitude determination augmented with inertial sensors, and the use of GPS for air and land vehicle surveillance and navigation. He taught courses in aerospace control including radio and inertial navigation, optimization and digital implementations and is a coauthor of two of the leading control textbooks. He is also an author or coauthor on over 100 papers.
    1998 – present – Emeritus faculty carrying out research in Aeronautics and Astronautics at Stanford Univ. Recent focus of research is the use of GPS-based attitude determination augmented with inertial sensors, applications of the FAA’s WAAS for enhanced pilot displays, flight inspection of aircraft landing systems, and the use of WAAS and new displays to enable closer spacing of parallel runways.

    SOCIETY MEMBERSHIPS
    AIAA (Fellow), ASME (Fellow), SAE, IEEE, ION

    CONSULTANT TO: (over past several years)
    Seagull Technology
    Sequoia Instruments
    Engine Control and Monitoring
    Transparent Networks
    Pratt and Whitney (Technical Advisory Committee)
    Sensor Platforms

    OTHER RECENT ACTIVITIES
    Co-Founder, CEO, and Director of GyroSat Corp. 1999 – 2000
    Director of Sequoia Instruments, 2001 – 2005
    Aircraft owner and licensed instrument pilot
    National Research Council Panel member for the review of NASA airspace activities, 2003
    Board of Directors, Mechanics Bank, Richmond, CA., 2003 – 2015
    Board of Directors, ExactBid, Inc. 2014-present.