School of Engineering


Showing 21-40 of 73 Results

  • Derek Fong

    Derek Fong

    Sr Research Engineer

    BioDerek Fong's research in environmental and geophysical fluid dynamics focuses on understanding the fundamental transport and mixing processes in the rivers, estuaries and the coastal ocean. He employs different methods for studying such fluid processes including laboratory experiments, field experiments, and numerical modeling. His research projects include studying lateral dispersion, in stratified coastal flows, the fate and transport of freshwater in river plumes, advanced hydrodynamic measurement techniques, coherent structures in nearshore flows, bio-physical interactions in stratified lakes, fate of contaminated sediments, and secondary circulation and mixing in curved channels.

    Derek teaches a variety of classes at both the undergraduate and graduate level. Some of the classes he has offered include Mechanics of Fluids; Rivers, Streams and Canals; Transport and Mixing in Surface Waters; Introduction to Physical Oceanography; Mechanics of Stratified Fluids; Dynamics of Lakes and Reservoirs; Science and Engineering Problem Solving using Matlab; the Future and Science of Water; Hydrodynamics and Geophysical Fluid Dynamics.

    Prior to coming to Stanford, Derek spent five years at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution studying the dynamics of freshwater plumes for his doctoral thesis. He has also served as a senior lecturer at the University of Washington, Friday Harbor Laboratories in Friday Harbor, Washington.

  • David Freyberg

    David Freyberg

    Associate Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsMy students and I study sediment and water balances in aging reservoirs, collaborative governance of transnational fresh waters, the design of centralized and decentralized wastewater collection, treatment, and reuse systems in urban areas, and hydrologic ecosystem services in urban areas and in systems for which sediment production, transport, and deposition have significant consequences.

  • Oliver Fringer

    Oliver Fringer

    Professor of Civil and Environmental Engineering and of Oceans

    BioFringer's research focuses on the development and application of numerical models and high-performance computational techniques to the study of fundamental processes that influence the dynamics of the coastal ocean, rivers, lakes, and estuaries.

  • Renate Fruchter

    Renate Fruchter

    Director of PBL Lab

    Current Research and Scholarly InterestsCognitive demands on global learners, VR in teamwork, Sustainability, Wellbeing

  • Catherine Gorle

    Catherine Gorle

    Associate Professor of Civil and Environmental Engineering

    Current Research and Scholarly InterestsGorle's research focuses on the development of predictive flow simulations to support the design of sustainable buildings and cities. Specific topics of interest are the coupling of large- and small-scale models and experiments to quantify uncertainties related to the variability of boundary conditions, the development of uncertainty quantification methods for low-fidelity models using high-fidelity data, and the use of field measurements to validate and improve computational predictions.

  • Lynn Hildemann

    Lynn Hildemann

    Senior Associate Dean for Education and Professor of Civil and Environmental Engineering

    BioLynn Hildemann's current research areas include the sources and dispersion of airborne particulate matter indoors, and assessment of human exposure to air pollutants.

    Prof. Hildemann received BS, MS, and PhD degrees in environmental engineering science from the California Institute of Technology. She is an author on >100 peer-reviewed publications, including two with over 1000 citations each, and another 6 with over 500 citations each. She has been honored with Young Investigator Awards from NSF and ONR, the Kenneth T. Whitby Award from the AAAR (1998), and Stanford's Gores Award for Teaching Excellence (2013); she also was a co-recipient of Atmospheric Environment’s Haagen-Smit Outstanding Paper Award (2001).

    She has served on advisory committees for the Bay Area Air Quality Management District and for the California Air Resources Board. She has been an Associate Editor for Environmental Science & Technology, and Aerosol Science and Technology, and has served on the advisory board for the journal Environmental Science & Technology.

    At Stanford, Prof. Hildemann has been chair of the Department of Civil & Environmental Engineering, and served as an elected member of the Faculty Senate. She has chaired the School of Engineering Library Committee, the University Committee on Judicial Affairs, and the University Breadth Governance Board.

  • Mark Jacobson

    Mark Jacobson

    Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy

    BioMark Z. Jacobson’s career has focused on better understanding air pollution and global warming problems and developing large-scale clean, renewable energy solutions to them. Toward that end, he has developed and applied three-dimensional atmosphere-biosphere-ocean computer models and solvers to simulate air pollution, weather, climate, and renewable energy. He has also developed roadmaps to transition states and countries to 100% clean, renewable energy for all purposes and computer models to examine grid stability in the presence of high penetrations of renewable energy.

  • Rishee Jain

    Rishee Jain

    Associate Professor of Civil and Environmental Engineering

    BioProfessor Jain's research focuses on the development of data-driven and socio-technical solutions to sustainability problems facing the urban built environment. His work lies at the intersection of civil engineering, data analytics and social science. Recently, his research has focused on understanding the socio-spatial dynamics of commercial building energy usage, conducting data-driven benchmarking and sustainability planning of urban buildings and characterizing the coupled dynamics of urban systems using data science and micro-experimentation. For more information, see the active projects on his lab (Stanford Urban Informatics Lab) website.

  • Anne Kiremidjian

    Anne Kiremidjian

    The C.L. Peck, Class of 1906 Professor in the School of Engineering

    BioKiremidjian’s research focuses in two main areas. The first is in earthquake hazard, risk, and resilience modeling. She works on structural component and systems reliability methods; structural damage evaluation models; and regional damage, loss and casualty estimation methods utilizing geographic information and database management systems for portfolios of buildings or spatially distributed lifeline systems assessment with ground motion and structure correlations. Her current research has focused on the development of time dependent hazard and risk models for resilience evaluation of hospitals, schools and financial instruments. In the area of time dependent risk assessment, she has developed models for damage estimation of deteriorating structures in varying environmental conditions.

    The second area of research focuses on the design and implementation of wireless sensor networks for health monitoring of structures under every-day loading conditions, and the development of robust and computationally efficient algorithms for structural damage diagnosis following extreme events that can be embedded in wireless sensing units. The damage algorithms utilize modern data science, machine learning and artificial intelligence methods.

  • Peter K. Kitanidis

    Peter K. Kitanidis

    Professor of Civil and Environmental Engineering

    BioKitanidis develops methods for the solution of interpolation and inverse problems utilizing observations and mathematical models of flow and transport. He studies dilution and mixing of soluble substances in heterogeneous geologic formations, issues of scale in mass transport in heterogeneous porous media, and techniques to speed up the decay of pollutants in situ. He also develops methods for hydrologic forecasting and the optimization of sampling and control strategies.

  • Jeffrey R. Koseff

    Jeffrey R. Koseff

    Director, Change Leadership for Sustainability Program, William Alden Campbell and Martha Campbell Professor in the School of Engineering, Professor of Oceans and Senior Fellow at the Woods Institute for the Environment

    BioJeff Koseff, founding co-director of the Stanford Woods Institute for the Environment, is an expert in the interdisciplinary domain of environmental fluid mechanics. His research falls in the interdisciplinary domain of environmental fluid mechanics and focuses on the interaction between physical and biological systems in natural aquatic environments. Current research activities are in the general area of environmental fluid mechanics and focus on: turbulence and internal wave dynamics in stratified flows, coral reef and sea-grass hydrodynamics, the role of natural systems in coastal protection, and flow through terrestrial and marine canopies. Most recently he has begun to focus on the interaction between gravity currents and breaking internal waves in the near-coastal environment, and the transport of marine microplastics. Koseff was formerly the Chair of Civil and Environmental Engineering, and the Senior Associate Dean of Engineering at Stanford, and has served on the Board of Governors of The Israel Institute of Technology, and has been a member of the Visiting Committees of the Civil and Environmental Engineering department at Carnegie-Mellon University, The Iowa Institute of Hydraulic Research, and Cornell University. He has also been a member of review committees for the College of Engineering at the University of Michigan, The WHOI-MIT Joint Program, and the University of Minnesota Institute on the Environment. He is a former member of the Independent Science Board of the Bay/Delta Authority. He was elected a Fellow of the American Physical Society in 2015, and received the Richard Lyman Award from Stanford University in the same year. In 2020 he was elected as a Fellow of the California Academy of Sciences. Koseff also serves as the Faculty Athletics Representative to the Pac-12 and NCAA for Stanford.

  • Kincho Law

    Kincho Law

    Professor of Civil and Environmental Engineering

    BioLaw's research interest is in the application of advanced computing principles and techniques for structural engineering analysis and design. His research interests include computational mechanics, numerical methods, and analysis and simulation of large-scale systems using distributed workstations and high performance parallel computers. His work has also dealt with sensing, monitoring and control of structures as well as various aspects of computer-aided design, including application of information technology to facilitate regulatory compliance assistance, to facilitate analysis and design of building structures and to coordinate concurrent engineering design activities.

  • James Leckie

    James Leckie

    C.L. Peck, Class of 1906 Professor in the School of Engineering, Emeritus

    BioLeckie investigates chemical pollutant behavior in natural aquatic systems and engineered processes, specifically the environmental aspects of surface and colloid chemistry and the geochemistry of trace elements. New research efforts are focused on the development of techniques and models for assessment of exposure of humans to toxic chemicals. Specific attention has been paid to the evaluation of exposure of young children to toxic chemicals. Other interests include technology transfer and the development of environmental science programs in developing nations.

  • Michael Lepech

    Michael Lepech

    Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment

    BioUnsustainable energy and material consumption, waste production, and emissions are some of today’s most pressing global concerns. To address these concerns, civil engineers are now designing facilities that, for example, passively generate power, reuse waste, and are carbon neutral. These designs are based foremost on longstanding engineering theory. Yet woven within this basic knowledge must be new science and new technologies, which advance the field of civil engineering to the forefront of sustainability-focused design.

    My research develops fundamental engineering design concepts, models, and tools that are tightly integrated with quantitative sustainability assessment and service life modeling across length scales, from material scales to system scales, and throughout the early design, project engineering, construction, and operation life cycle phases of constructed facilities. My research follows the Sustainable Integrated Materials, Structures, Systems (SIMSS) framework. SIMSS is a tool to guide the multi-scale design of sustainable built environments, including multi-physics modeling informed by infrastructure sensing data and computational learning and feedback algorithms to support advanced digital-twinning of engineered systems. Thus, my research applies SIMMS through two complementary research thrusts; (1) developing high-fidelity quantitative sustainability assessment methods that enable civil engineers to quickly and probabilistically measure sustainability indicators, and (2) creating multi-scale, fundamental engineering tools that integrate with sustainability assessment and facilitate setting and meeting sustainability targets throughout the life cycle of constructed facilities.

    Most recently, my research forms the foundation of the newly created Stanford Center at the Incheon Global Campus (SCIGC) in South Korea, a university-wide research center examining the potential for smart city technologies to enhance the sustainability of urban areas. Located in the smart city of Songdo, Incheon, South Korea, SCIGC is a unique global platform to (i) advance research on the multi-scale design, construction, and operation of sustainable built environments, (ii) demonstrate to cities worldwide the scalable opportunities for new urban technologies (e.g., dense urban sensing networks, dynamic traffic management, autonomous vehicles), and (iii) improve the sustainability and innovative capacity of increasingly smarter cities globally.

    With an engineering background in civil and environmental engineering and material science (BSE, MSE, PhD), and business training in strategy and finance (MBA), I continue to explore to the intersection of entrepreneurship education, innovation capital training, and the potential of startups to more rapidly transfer and scale technologies to solve some of the world's most challenging problems.

  • Raymond Levitt

    Raymond Levitt

    Kumagai Professor in the School of Engineering, Emeritus

    Current Research and Scholarly InterestsDr. Levitt founded and directs Stanford’s Global Projects Center (GPC), which conducts research, education and outreach to enhance financing, governance and sustainability of global building and infrastructure projects. Dr. Levitt's research focuses on developing enhanced governance of infrastructure projects procured via Public-Private Partnerships (PPP) delivery, and alternative project delivery approaches for complex buildings like full-service hospitals or data centers.

  • Zhiye Li

    Zhiye Li

    Research Engineer

    BioDr. Li is a research engineer in Civil and Environmental Engineering at Stanford University in the field of data-driven innovation and multiscale modeling on climate-resilient and sustainable civil infrastructures. She is also a researcher at the John A. Blume Earthquake Engineering Center at Stanford University and the Stanford Center at the Incheon Global Campus (SCIGC). Her interdisciplinary research integrates multiphysics model, machine learning, life cycle assessment and material innovation to accelerate the global net-zero transition. Within civil engineering, her research focuses on developing new building materials and building practices for more sustainable built environments. She researched at Hopkins Extreme Materials Institute and completed her Ph.D. in Civil Engineering at Johns Hopkins University.