School of Engineering

Showing 21-40 of 51 Results

  • Ian Fisher

    Ian Fisher

    Professor of Applied Physics and, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsOur research focuses on the study of quantum materials with unconventional magnetic & electronic ground states & phase transitions. Emphasis on design and discovery of new materials. Recent focus on use of strain as a probe of, and tuning parameter for, a variety of electronic states. Interests include unconventional superconductivity, quantum phase transitions, nematicity, multipolar order, instabilities of low-dimensional materials and quantum magnetism.

  • Kenneth Goodson

    Kenneth Goodson

    Davies Family Provostial Professor, Senior Associate Dean for Faculty and Academic Affairs and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.

  • Guosong Hong

    Guosong Hong

    Assistant Professor of Materials Science and Engineering

    BioGuosong Hong's research aims to bridge materials science and neuroscience, and blur the distinction between the living and non-living worlds by developing novel neuroengineering tools to interrogate and manipulate the brain. Specifically, the Hong lab is currently developing ultrasound, infrared, and radiofrequency-based in-vivo neural interfaces with minimal invasiveness, high spatiotemporal resolution, and cell-type specificity.

    Dr. Guosong Hong received his PhD in chemistry from Stanford University in 2014, and then carried out postdoctoral studies with at Harvard University. Dr. Hong joined Stanford Materials Science and Engineering and Neurosciences Institute as an assistant professor in 2018. He is a recipient of the NIH Pathway to Independence (K99/R00) Award, the MIT Technology Review ‘35 Innovators Under 35’ Award, the Science PINS Prize for Neuromodulation, the NSF CAREER Award, the Walter J. Gores Award for Excellence in Teaching, and the Rita Allen Foundation Scholars Award.

  • Robert Huggins

    Robert Huggins

    Professor of Materials Science and Engineering, Emeritus

    BioProfessor Huggins joined Stanford as Assistant Professor in 1954, was promoted to Associate Professor in 1958, and to Professor in 1962.

    His research activities have included studies of imperfections in crystals, solid-state reaction kinetics, ferromagnetism, mechanical behavior of solids, crystal growth, and a wide variety of topics in physical metallurgy, ceramics, solid state chemistry and electrochemistry. Primary attention has recently been focused on the development of understanding of solid state ionic phenomena involving solid electrolytes and mixed ionic-electronic conducting materials containing atomic or ionic species such as lithium, sodium or oxygen with unusually high mobility, as well as their use in novel battery and fuel cell systems, electrochromic optical devices, sensors, and in enhanced heterogeneous catalysis. He was also involved in the development of the understanding of the key role played by the phase composition and oxygen stoichiometry in determining the properties of high temperature oxide superconductors.

    Topics of particular recent interest have been related to energy conversion and storage, including hydrogen transport and hydride formation in metals, alloys and intermetallic compounds, and various aspects of materials and phenomena related to advanced lithium batteries.

    He has over 400 professional publications, including three books; "Advanced Batteries", published by Springer in 2009, "Energy Storage", published by Springer in 2010, and Energy Storage, Second Edition in 2016.

  • Felipe Jornada

    Felipe Jornada

    Assistant Professor of Materials Science and Engineering

    BioFelipe Jornada's research aims at predicting and understanding excited-state phenomena in quantum and energy materials. In order to make reliable predictions on novel materials, he relies on high-performance computer calculations based on parameter-free, quantum-mechanical theories that are developed in his group. He is interested in studying fundamental aspects of these excitations – their lifetimes, dynamics, and stability/binding energies – and how they can be engineered in novel materials, such as nanostructured and low-dimensional systems. His ultimate goal is to use insights from atomistic calculations to rationally design new materials with applications in energy research, electronics, optoelectronics, and quantum technologies.

    Felipe received his Ph.D. degree in physics from UC Berkeley in 2017 under the advice of Prof. Steven G. Louie. His Ph.D. research focused on the prediction of the electronic and optical properties of new quasi-two-dimensional materials, such as graphene and monolayer transition metal dichalcogenides. In his postdoc, he studied a number of problems related to multiparticle excitations in low-dimensional materials, including biexcitons and plasmons. Felipe joined the Stanford faculty in January 2020 and an assistant professor in the Department of Materials Science and Engineering.

  • Rajan Kumar

    Rajan Kumar


    BioRajan (Raj) Kumar is a Lecturer and the Director of Undergraduate Studies in the Materials Science and Engineering Department and serves as a Lecturer Consultant with the Center for Teaching and Learning at Stanford University. He specializes in integrating research and communication learning goals into STEM courses and designing inclusive research experiences for undergraduates. Raj currently teaches a variety of undergraduate and master’s level MatSci courses and is the faculty coordinator for the MatSci REU Program. Through these efforts, Raj strives to help students develop strong research and communication skills and solve multidisciplinary problems.

    Raj received his both his BS (Northwestern) and his PhD (UC Berkeley) in Materials Science and Engineering. During his PhD, Raj studied electrochemical energy storage devices with an emphasis on developing printable batteries for integrated electronic systems. He also completed part of his PhD at SLAC National Accelerator Laboratory through the Department of Energy SCGSR Fellowship. As a graduate student, Raj received the UC Berkeley Teaching Effectiveness Award and Outstanding Graduate Student Instructor Award. He also led workshops on effective teaching strategies for first-time graduate student instructors.

  • Aaron Lindenberg

    Aaron Lindenberg

    Professor of Materials Science and Engineering and of Photon Science

    BioLindenberg's research is focused on visualizing the ultrafast dynamics and atomic-scale structure of materials on femtosecond and picosecond time-scales. X-ray and electron scattering and spectroscopic techniques are combined with ultrafast optical techniques to provide a new way of taking snapshots of materials in motion. Current research is focused on the dynamics of phase transitions, ultrafast properties of nanoscale materials, and charge transport, with a focus on materials for information storage technologies, energy-related materials, and nanoscale optoelectronic devices.

  • Dr. Michael T. Longaker

    Dr. Michael T. Longaker

    Deane P. and Louise Mitchell Professor in the School of Medicine and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsWe have six main areas of current interest: 1) Cranial Suture Developmental Biology, 2) Distraction Osteogenesis, 3) Fibroblast heterogeneity and fibrosis repair, 4) Scarless Fetal Wound Healing, 5) Skeletal Stem Cells, 6) Novel Gene and Stem Cell Therapeutic Approaches.

  • Dr. Arun Majumdar

    Dr. Arun Majumdar

    Dean, Stanford Doerr School of Sustainability, Jay Precourt Professor, Professor of Mechanical Engineering, of Energy Science & Engineering, of Photon Science, by courtesy, of Materials Sci & Eng and Senior Fellow, by courtesy, at Hoover

    BioDr. Arun Majumdar is the inaugural Dean of the Stanford Doerr School of Sustainability. He is the Jay Precourt Provostial Chair Professor at Stanford University, a faculty member of the Departments of Mechanical Engineering and Energy Science and Engineering, a Senior Fellow and former Director of the Precourt Institute for Energy and Senior Fellow (courtesy) of the Hoover Institution. He is also a faculty in Department of Photon Science at SLAC.

    In October 2009, Dr. Majumdar was nominated by President Obama and confirmed by the Senate to become the Founding Director of the Advanced Research Projects Agency - Energy (ARPA-E), where he served until June 2012 and helped ARPA-E become a model of excellence and innovation for the government with bipartisan support from Congress and other stakeholders. Between March 2011 and June 2012, he also served as the Acting Under Secretary of Energy, enabling the portfolio of Office of Energy Efficiency and Renewable Energy, Office of Electricity Delivery and Reliability, Office of Nuclear Energy and the Office of Fossil Energy, as well as multiple cross-cutting efforts such as Sunshot, Grid Modernization Team and others that he had initiated. Furthermore, he was a Senior Advisor to the Secretary of Energy, Dr. Steven Chu, on a variety of matters related to management, personnel, budget, and policy. In 2010, he served on Secretary Chu's Science Team to help stop the leak of the Deep Water Horizon (BP) oil spill.

    Dr. Majumdar serves as the Chair of the Advisory Board of the US Secretary of Energy, Jennifer Granholm. He led the Agency Review Team for the Department of Energy, Federal Energy Regulatory Commission and the Nuclear Regulatory Commission during the Biden-Harris Presidential transition. He served as the Vice Chairman of the Advisory Board of US Secretary of Energy, Dr. Ernest Moniz, and was also a Science Envoy for the US Department of State with focus on energy and technology innovation in the Baltics and Poland. He also serves on numerous advisory boards and boards of businesses, investment groups and non-profit organizations.

    After leaving Washington, DC and before joining Stanford, Dr. Majumdar was the Vice President for Energy at Google, where he assembled a team to create technologies and businesses at the intersection of data, computing and electricity grid.

    Dr. Majumdar is a member of the US National Academy of Sciences, US National Academy of Engineering and the American Academy of Arts and Sciences. His research in the past has involved the science and engineering of nanoscale materials and devices, especially in the areas of energy conversion, transport and storage as well as biomolecular analysis. His current research focuses on redox reactions and systems that are fundamental to a sustainable energy future, multidimensional nanoscale imaging and microscopy, and an effort to leverage modern AI techniques to develop and deliver energy and climate solutions.

    Prior to joining the Department of Energy, Dr. Majumdar was the Almy & Agnes Maynard Chair Professor of Mechanical Engineering and Materials Science & Engineering at University of California–Berkeley and the Associate Laboratory Director for energy and environment at Lawrence Berkeley National Laboratory. He also spent the early part of his academic career at Arizona State University and University of California, Santa Barbara.

    Dr. Majumdar received his bachelor's degree in Mechanical Engineering at the Indian Institute of Technology, Bombay in 1985 and his Ph.D. from the University of California, Berkeley in 1989.

  • Andrew J. Mannix

    Andrew J. Mannix

    Assistant Professor of Materials Science and Engineering

    Current Research and Scholarly InterestsAtomically thin 2D materials incorporated into van der Waals heterostructures are a promising platform to deterministically engineer quantum materials with atomically resolved thickness and abrupt interfaces across macroscopic length scales while retaining excellent material properties. Because 2D materials exhibit a wide range of electronic characteristics with properties that often rival conventional electronic materials — e.g., metals, semiconductors, insulators, and superconductors — it is possible to combine them in virtually infinite variety to achieve diverse heterostructures. Furthermore, the van der Waals interface enables interlayer twist engineering to modify the interlayer symmetry, periodic potential (moiré superlattice), and hybridization, which has resulted in novel quantum states of matter. Many of these heterostructures, especially those involving specific interlayer twist angles, would be otherwise infeasible through direct growth.

    The Mannix Group is developing a unique set of in-house capabilities to systematically elucidate the fundamental structure-property relationships underpinning the growth of 2D materials and their inclusion into van der Waals heterostructures. Greater understanding will allow us to provide a platform for engineering the properties of matter at the atomic scale and offer guidance for emerging applications in novel electronics and in quantum information science.

    To accomplish this, we employ: precise growth techniques such as chemical vapor deposition and molecular beam epitaxy; automated van der Waals assembly; and atomically-resolved microscopy including cryo-STM/AFM.

  • Paul McIntyre

    Paul McIntyre

    Rick and Melinda Reed Professor, Professor of Photon Science and Senior Fellow at the Precourt Institute for Energy

    BioMcIntyre's group performs research on nanostructured inorganic materials for applications in electronics, energy technologies and sensors. He is best known for his work on metal oxide/semiconductor interfaces, ultrathin dielectrics, defects in complex metal oxide thin films, and nanostructured Si-Ge single crystals. His research team synthesizes materials, characterizes their structures and compositions with a variety of advanced microscopies and spectroscopies, studies the passivation of their interfaces, and measures functional properties of devices.

  • Tyler Mefford

    Tyler Mefford

    Senior Physical Science Research Scientist

    BioElectrochemistry offers a clean pathway to reduce greenhouse gas emissions in manufacturing, chemical production, transportation, and to store excess energy from intermittent renewables like wind and solar. My research is focused on improving electrochemical energy storage and conversion technologies through rational material design. I develop new, higher performance electrodes and advanced techniques to study material structure-property relationships during operation. I am particularly interested in the functionality of transition metal oxides and polymeric electrodes in aqueous systems for use as battery electrodes and electrocatalysts for hydrogen production, oxygen reduction/evolution, CO2 reduction, and ammonia production.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.

    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Kunal Mukherjee

    Kunal Mukherjee

    Assistant Professor of Materials Science and Engineering

    BioKunal Mukherjee is an assistant professor in Materials Science and Engineering at Stanford. He has been an assistant professor in the Materials department at UC Santa Barbara (2016-2020), held postdoctoral appointments at IBM TJ Watson Research Center (2016) and MIT (2015), and worked as a transceiver engineer at Finisar (2009-2010).

    The Mukherjee group specializes in semiconductors that emit and detect light in the infrared. Our research enables better materials for data transmission, sensing, manufacturing, and environmental monitoring. We make high-quality thin films with IV-VI (PbSnSe) and III-V (GaAs-InAs/GaSb) material systems and spend much of our time understanding how imperfections in the crystalline structure such as dislocations and point defects impact their electronic and optical properties. This holds the key to directly integrating these semiconductors with silicon and germanium substrates for new hybrid circuits that combine infrared photonics and conventional electronics.

  • William Nix

    William Nix

    Lee Otterson Professor in the School of Engineering, Emeritus

    BioI have been engaged in the study of mechanical properties of materials for nearly 50 years. My early work was on high temperature creep and fracture of metals, focusing on techniques for measuring internal back stresses in deforming metals and featuring the modeling of diffusional deformation and cavity growth processes. My students and I also studied high temperature dispersion strengthening mechanisms and described the effects of threshold stresses on these creep processes. Since the mid-1980's we have focused most of our attention on the mechanical properties of thin film materials used in microprocessors and related devices. We have developed many of the techniques that are now used to study of thin film mechanical properties, including nanoindentation, substrate curvature methods, bulge testing methods and the mechanical testing of micromachined (MEMS) structures. We are also known for our work on the mechanisms of strain relaxation in heteroepitaxial thin films and plastic deformation of thin metal films on substrates. In addition we have engaged in research on the growth, characterization and modeling of thin film microstructures, especially as they relate to the development of intrinsic stresses. Some of our recent work dealt with the mechanical properties of nanostructures and with strain gradients and size effects on the mechanical properties of crystalline materials. Our most recent work deals with the mechanical properties of lithiated nanostructures that are being considered for lithium-ion battery applications.

  • Jim Plummer

    Jim Plummer

    John M. Fluke Professor of Electrical Engineering and Professor, by courtesy, of Materials Science and Engineering
    On Leave from 01/01/2023 To 03/31/2023

    Current Research and Scholarly InterestsGenerally studies the governing physics and fabrication technology of silicon integrated circuits, including the scaling limits of silicon technology, and the application of silicon technology outside traditional integrated circuits, including power switching devices such as IGBTs. Process simulation tools like SUPREM for simulating fabrication. Recent work has focused on wide bandgap semiconductor materials, particularly SiC and GaN, for power control devices.

  • Eric Pop

    Eric Pop

    Professor of Electrical Engineering and, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.