School of Engineering


Showing 21-40 of 143 Results

  • Brian Cantwell

    Brian Cantwell

    Edward C. Wells Professor in the School of Engineering and Professor of Mechanical Engineering

    BioProfessor Cantwell's research interests are in the area of turbulent flow. Recent work has centered in three areas: the direct numerical simulation of turbulent shear flows, theoretical studies of the fine-scale structure of turbulence, and experimental measurements of turbulent structure in flames. Experimental studies include the development of particle-tracking methods for measuring velocity fields in unsteady flames and variable density jets. Research in turbulence simulation includes the development of spectral methods for simulating vortex rings, the development of topological methods for interpreting complex fields of data, and simulations of high Reynolds number compressible and incompressible wakes. Theoretical studies include predictions of the asymptotic behavior of drifting vortex pairs and vortex rings and use of group theoretical methods to study the nonlinear dynamics of turbulent fine-scale motions. Current projects include studies of fast-burning fuels for hybrid propulsion and decomposition of nitrous oxide for space propulsion.

  • Fu-Kuo Chang

    Fu-Kuo Chang

    Professor of Aeronautics and Astronautics

    BioProfessor Chang's primary research interest is in the areas of multi-functional materials and intelligent structures with particular emphases on structural health monitoring, intelligent self-sensing diagnostics, and multifunctional energy storage composites for transportation vehicles as well as safety-critical assets and medical devices. His specialties include embedded sensors and stretchable sensor networks with built-in self-diagnostics, integrated diagnostics and prognostics, damage tolerance and failure analysis for composite materials, and advanced multi-physics computational methods for multi-functional structures. Most of his work involves system integration and multi-disciplinary engineering in structural mechanics, electrical engineering, signal processing, and multi-scale fabrication of materials. His recent research topics include: Multifunctional energy storage composites, Integrated health management for aircraft structures, bio-inspired intelligent sensory materials for fly-by-feel autonomous vehicles, active sensing diagnostics for composite structures, self-diagnostics for high-temperature materials, etc.

  • Richard Christensen

    Richard Christensen

    Professor (Research) of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus

    BioProfessor Christensen's research is concerned with the mechanics of materials. The behavior of polymers and polymeric fiber composites are areas of specialization. Of particular interest is the field of micro-mechanics that focuses on materials' functionality at intermediate-length scales between atomic and the usual macro scale. Applicable techniques involve the methods of homogenization for all types of composite materials. The intended outcomes of his research are useful means of characterizing the yielding, damage accumulation, and failure behavior of modern materials. A related website has been developed to provide critical evaluations for the mathematical failure criteria used with the various classes of engineering materials. Most of these materials types are employed in aerospace structures and products.

  • Matthew Clarke

    Matthew Clarke

    Ph.D. Student in Aeronautics and Astronautics, admitted Spring 2017

    BioI am a PhD candidate in the Department of Aeronautics and Astronautics at Stanford University. My research interests include aircraft conceptual design, multi-disciplinary design optimization, multi-fidelity optimization and the use of Artificial Intelligence (AI) to develop of new strategies for vehicular optimization. These modes of transportation include commercial transport aircraft, supersonic aircraft, and urban on-demand electric vertical take-off and landing (eVTOL) vehicles.

    In addition to these endeavors, I dedicate time towards addressing socio-economic issues, particularly within academia. Presently, I work on developing STEM curriculum for underrepresented minorities as well as drafting new, synergistic approaches to introducing technology into society. I serve as the president of the Black Engineering Graduate Student Association, a student run organization whose mission is to build a sense of community among and facilitate the professional development and academic success of the black engineering community.

    I graduated Summa Cum Laude from Howard University with a Bachelor’s Degree in Mechanical Engineering. In undergrad, my involvement in extracurricular activities nurtured an ability to share information and contribute to decision-making. Outside coursework, I participated in global collaborative competitions geared towards proposing innovative solutions for future transportation. I also led humanitarian missions to Kenya, El Salvador and Haiti with Engineers Without Borders, a non-profit organization that partners with developing communities worldwide to improve their quality of life. These partnerships involved the implementation of sustainable engineering projects such as power, communal infrastructure and access to drinking water.

    I am a member of Tau Beta Pi, the Engineering Honor Society; the American Society of Mechanical Engineers (ASME); the American Institute of Aeronautics and Astronautics (AIAA), and the National Society of Black Engineers (NSBE).

    Following graduate school, I plan to pursue a career in industry focused on research and development of revolutionary air and spacecraft technology. My future aspirations also include teaching and inspiring minority students in STEM.

  • Sigrid Close

    Sigrid Close

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioProf. Close's research involves space weather detection and modeling for improved spacecraft designs, and advanced signal processing and electromagnetic wave interactions with plasma for ground-to-satellite communication systems. These topics fall under the Space Situational Awareness (SSA) umbrella that include environmental remote sensing using satellite systems and ground-based radar. Her current efforts are the MEDUSSA (Meteoroid, Energetics, and Debris Understanding for Space Situational Awareness) program, which uses dust accelerators to understand the effects of hypervelocity particle impacts on spacecraft along with Particle-In-Cell simulations, and using ground-based radars to characterize the space debris and meteoroid population remotely. She also has active programs in hypersonic plasmas associated with re-entry vehicles.

  • Simone D'Amico

    Simone D'Amico

    Associate Professor of Aeronautics and Astronautics

    BioSimone D’Amico is Associate Professor of Aeronautics and Astronautics at Stanford University. He received the B.S. and M.S. degrees from Politecnico di Milano (2003) and the Ph.D. degree from Delft University of Technology (2010). From 2003 to 2014, he was research scientist and team leader at the German Aerospace Center (DLR). There, he gave key contributions to the design, development, and operations of spacecraft formation-flying and rendezvous missions such as GRACE (United States/Germany), TanDEM-X (Germany), PRISMA (Sweden/Germany/France), and PROBA-3 (ESA). From 2014 to 2020, he was Assistant Professor of Aeronautics and Astronautics at Stanford University. He is the Founding director of the Space Rendezvous Laboratory (SLAB), and Satellite Advisor of the Student Space Initiative (SSSI), Stanford’s largest undergraduate organization. He has over 200 scientific publications and 3000 google scholar’s citations, including conference proceedings, peer-reviewed journal articles, and book chapters. D'Amico's research aims at enabling future miniature distributed space systems for unprecedented science and exploration. His efforts lie at the intersection of advanced astrodynamics, GN&C, and space system engineering to meet the tight requirements posed by these novel space architectures. The most recent mission concepts developed by Dr. D'Amico are a miniaturized distributed occulter/telescope (mDOT) system for direct imaging of exozodiacal dust and exoplanets and the Autonomous Nanosatellite Swarming (ANS) mission for characterization of small celestial bodies. D’Amico’s research is supported by NASA, NSF, AFRL, AFOSR, KACST, and Industry. He is Chairman of the NASA's Starshade Science and Technology Working Group (TSWG). He is member of the advisory board of space startup companies and VC edge funds. He is member of the Space-Flight Mechanics Technical Committee of the AAS, Associate Fellow of AIAA, Associate Editor of the AIAA Journal of Guidance, Control, and Dynamics and the IEEE Transactions of Aerospace and Electronic Systems. He is Fellow of the NAE’s US FOE Symposium. Dr. D’Amico was recipient of the Leonardo 500 Award by the Leonardo Da Vinci Society and ISSNAF (2019), the Stanford’s Introductory Seminar Excellence Award (2019 and 2020), the FAI/NAA‘s Group Diploma of Honor (2018), the Exemplary System Engineering Doctoral Dissertation Award by the International Honor Society for Systems Engineering OAA (2016), the DLR’s Sabbatical/Forschungssemester in honor of scientific achievements (2012), the DLR’s Wissenschaft Preis in honor of scientific achievements (2006), and the NASA’s Group Achievement Award for the Gravity Recovery and Climate Experiment, GRACE (2004).

  • Daniel DeBra

    Daniel DeBra

    Edward C. Wells Professor of Engineering, Emeritus

    BioProfessor DeBra collaborates with Stanford physicists on three projects: Gravity Probe-B (GP-B), Space Test of the Equivalence Principle (STEP), and the vibration isolation of a gravity-wave antenna (LIGO). These involve satellite control of attitude and translation and the development of instruments of extraordinary precision and accuracy. In GP-B gyroscopes were successfully orbited in 2004. They have been compared to stars to an accuracy approaching a nanoradian. In STEP the orbital performance promises improvements of a million in testing the equivalence of inertial and gravitational mass. (It is currently in a hiatus of funding.) Professor DeBra's interests in precision engineering extend to manufacturing where his students' work developing "quiet hydraulics" in the 1990s has more recently been applied to the vibration isolation of the optical systems of LIGO.