School of Engineering
Showing 21-40 of 265 Results
-
Stacey Bent
Vice Provost, Graduate Education & Postdoc Affairs, Jagdeep & Roshni Singh Professor in the School of Engineering, Professor of Energy Science and Engineering and, by courtesy, of Electrical Eng, Materials Sci Eng & Chemistry
BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.
-
Abrar Bhat
Postdoctoral Scholar, Chemical Engineering
Current Research and Scholarly InterestsI am investigating the biophysical mechanisms that govern the organization and function of adhesion GPCRs involved in the process of synapse formation. aGPCRs possess dual roles in cell adhesion and signaling. Despite their importance in processes like neuronal synapse formation and association with various neuropsychiatric disorders, the precise mechanisms governing their organization and function at the cell membrane remain enigmatic.
-
Matteo Cargnello
Associate Professor of Chemical Engineering
BioMatteo Cargnello received his Ph.D. in Nanotechnology in 2012 at the University of Trieste, Italy, under the supervision of Prof. Paolo Fornasiero, and he was then a post-doctoral scholar in the Chemistry Department at the University of Pennsylvania with Prof. Christopher B. Murray before joining the Faculty at Stanford University in January 2015. He is currently Associate Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering and Silas Palmer Faculty Scholar. Dr. Cargnello is the recipient of several awards including the Sloan Fellowship in 2018, the Mitsui Chemicals Catalysis Science Award for Creative Work in 2020, and the Early Career Award in Catalysis from the ACS Catalysis Division in 2022. The general goals of the research in the Cargnello group pertain to solving energy and environmental challenges. The group focuses on capture and conversion of carbon dioxide, emission control and reduction of methane and hydrocarbon emissions in the atmosphere, sustainable chemical practices through electro- and photocatalysis, sustainable production of hydrogen, and chemical recycling of plastics.
-
Lynette Cegelski
Professor of Chemistry and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsOur research program is inspired by the challenge and importance of elucidating chemical structure and function in complex biological systems and the need for new strategies to treat infectious diseases. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We have introduced uniquely enabling problem-solving approaches integrating solid-state NMR spectroscopy with microscopy and biochemical and biophysical tools to determine atomic- and molecular-level detail in complex macromolecular assemblies and whole cells and biofilms. We are uncovering new chemistry and new chemical structures produced in nature. We identify small molecules that influence bacterial assembly processes and use these in chemical genetics approaches to learn about bacterial cell wall, amyloid and biofilm assembly.
Translationally, we have launched a collaborative antibacterial drug design program integrating synthesis, chemical biology, and mechanistic biochemistry and biophysics directed at the discovery and development of new antibacterial therapeutics targeting difficult-to-treat bacteria. -
Ying Chih Chang
Adjunct Professor
BioDr. Ying Chang is the Chair of the Taiwan Science and Technology Hub and an Adjunct Professor in the Department of Chemical Engineering at Stanford University. She is also the Founder and CEO of Acrocyte Therapeutics, Inc.
Her former faculty appointments include Research Fellow (-Associate Fellow) at the Genomics Research Center, Academia Sinica, Taiwan, and Assistant Professor in the Departments of Chemical Engineering and Materials Science, and Biomedical Engineering at the University of California, Irvine. The research highlights include integrating nanomaterials, microfluidics, and bioreactors to control cell fates for tissue engineering, as well as developing circulating tumor cell 3D culture for cancer diagnostics and precision medicine. She holds multiple patents in DNA microarray constructs (assigned to Affymetrix), circulating tumor cell isolation and cancer screening (assigned to Cellmax Life Inc.), and single cell derived scaffold free 3D culture platform RCE and circulating tumor cell liquid biopsy drug test (assigned to Acrocyte Therapeutics Inc. www.acrocyte.com).
Dr. Chang’s work was recognized by the Young Investigator Award from the Whitaker Foundation, FDA breakthrough device designation for pre-cancer and cancer detection (2021), Future Tech Award (2021), 18th National Innovation Award, Taiwan (2021), and Finalist at Startup Stadium at BIO 2024, among other. She is also on the board of trustees of Kaohsiaung Medical University, and Chang Chau-Ting Memorial Foundation, a non-profit organization for science education and awareness in Taiwan. She received her BS from National Taiwan University, and PhD from Stanford University, both in Chemical Engineering. -
Tianyang Chen
Postdoctoral Scholar, Chemical Engineering
BioBorn in southeastern China, I went to Beijing for undergraduate education after spending 18 years in Zhejiang province. At Peking university, I conducted research in the field of organometallic chemistry in Prof. Zhenfeng Xi's lab in College of Chemistry and Molecular Engineering (CCME). Hoping to achieve more in chemical research, I went abroad to the east coast of the US and became a graduate student in Chemistry Department of MIT, under the supervision of Prof. Mircea Dincᾰ. My research interests during graduate school span from electrically conductive metal-organic frameworks and porous organic polymers to electrochemcial energy storage using organic or organic/inorganic hybrid materials. After 6 years at MIT, I traveled accross the country (by driving) to the west coast and am currently a postdoctoral scholar in Prof. Zhenan Bao's lab, working on developing polymeric materials for electrochemical interphase in batteries.