School of Engineering


Showing 81-100 of 102 Results

  • Luise Avelina Seeker

    Luise Avelina Seeker

    Basic Life Research Scientist

    BioLuise Seeker is a trained vet from Berlin, Germany with a strong interest in researching ageing at a cellular level. She obtained a PhD in Genomics from the University of Edinburgh in 2018 for studying telomeres, their heritability and their power to predict lifespan (supervised by Profs. Georgios Banos, Dan Nussey, Mike Coffey and Bruce Whitelaw). She joined Prof. Anna Williams' lab at the University of Edinburgh as a postdoc and investigated transcriptional changes with ageing in the human central nervous system.

  • Hyongsok Tom  Soh

    Hyongsok Tom Soh

    Professor of Radiology (Early Detection), of Electrical Engineering, of Bioengineering and, by courtesy, of Chemical Engineering

    BioDr. Soh received his B.S. with a double major in Mechanical Engineering and Materials Science with Distinction from Cornell University and his Ph.D. in Electrical Engineering from Stanford University. From 1999 to 2003, Dr. Soh served as the technical manager of MEMS Device Research Group at Bell Laboratories and Agere Systems. He was a faculty member at UCSB before joining Stanford in 2015. His current research interests are in analytical biotechnology, especially in high-throughput screening, directed evolution, and integrated biosensors.

  • James Swartz

    James Swartz

    James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering

    Current Research and Scholarly InterestsProgram Overview

    The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
    Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
    To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
    To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
    More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances.

  • Sindy Tang

    Sindy Tang

    Associate Professor of Mechanical Engineering, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Radiology and of Bioengineering
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsThe long-term goal of Dr. Tang's research program is to harness mass transport in microfluidic systems to accelerate precision medicine and material design for a future with better health and environmental sustainability.

    Current research areas include: (I) Physics of droplets in microfluidic systems, (II) Interfacial mass transport and self-assembly, and (III) Applications in food allergy, single-cell wound repair, and the bottom-up construction of synthetic cell and tissues in close collaboration with clinicians and biochemists at the Stanford School of Medicine, UCSF, and University of Michigan.

    For details see https://web.stanford.edu/group/tanglab/

  • Hawa Racine Thiam

    Hawa Racine Thiam

    Assistant Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsCellular Biophysical Mechanisms of Innate Immune Cells Functions

  • Scott Uhlrich

    Scott Uhlrich

    Research Engineer

    Current Research and Scholarly InterestsExperimental biomechanical analysis of healthy and pathological human movement. Real-time biofeedback to modify motor control and kinematics.

    Musculoskeletal modeling and simulation for estimating unmeasurable quantities during movement, like joint forces in individuals with osteoarthritis. Predictive musculoskeletal simulations to design rehabilitation interventions.

    Computer vision, wearable sensing, and machine learning to develop tools that democratize biomechanical analysis and translate biomechanical interventions into clinical practice.

    Quantitative MRI for analyzing the effect of non-surgical treatments for osteoarthritis on cartilage health. PET-MRI for analyzing relationships between the mechanical loading of tissue metabolic activity.

  • Ross Daniel Venook

    Ross Daniel Venook

    Senior Lecturer of Bioengineering

    BioRoss is a Senior Lecturer in the Bioengineering department and he is the Associate Director for Engineering at the Stanford Byers Center for Biodesign.

    Ross primarily co-leads undergraduate laboratory courses at Stanford—an instrumentation lab (BIOE123) and an open-ended capstone design lab sequence (BIOE141A/B)—and he supports other courses and runs hands-on workshops in the areas of prototyping and systems engineering related to medical device innovation. He enjoys the unique challenges and constraints offered by biomedical engineering projects, and he delights in the opportunity for collaborative learning in a problem-solving environment.

    An Electrical Engineer by training (Stanford BS, MS, PhD), Ross’ graduate work focused on building and applying new types of MRI hardware for interventional and device-related uses. Following a Biodesign Innovation fellowship, Ross helped to start the MRI safety program at Boston Scientific Neuromodulation, where he worked for 15 years to enable safe MRI access for patients with implanted medical devices--including collaboration across the MRI safety community to create and improve international standards.

  • Bo Wang

    Bo Wang

    Assistant Professor of Bioengineering and, by courtesy, Developmental Biology

    Current Research and Scholarly InterestsResearch interests:
    (1) Systems biology of whole-body regeneration
    (2) Cell type evolution through the lens of single-cell multiomic sequencing analysis
    (3) Quantitative biology of brain regeneration
    (4) Regeneration of animal-algal photosymbiotic systems

  • Paul  J. Wang, MD

    Paul J. Wang, MD

    John R. and Ai Giak L. Singleton Director, Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsDr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang is committed to addressing disparities in care and is actively involved in increasing diversity in clinical trials.

  • Rahel Woldeyes

    Rahel Woldeyes

    Basic Life Research Scientist

    BioThe goal of my current research is to use high-resolution imaging techniques to interrogate outstanding questions in cardiac cell biology, with a focus on the signaling pathways that trigger heart muscle contraction. I currently use cryo-electron tomography-based imaging approaches to connect the molecular and cellular scales of biology and accelerate our understanding of human health and disease.

  • Joseph Woo, MD, FACS, FACC, FAHA

    Joseph Woo, MD, FACS, FACC, FAHA

    Norman E. Shumway Professor, Professor of Cardiothoracic Surgery and, by courtesy, of Bioengineering

    BioDr. Woo is a nationally recognized surgeon, innovator, researcher, and educator in cardiothoracic surgery.

    He chairs the Stanford Health Cardiothoracic Surgery Department. He is the Norman E. Shumway Professor of Cardiothoracic Surgery and holds a courtesy appointment in the Department of Bioengineering.

    Dr. Woo is a board-certified, fellowship-trained heart surgeon with an active clinical practice of more than 300 pump cases per year. He focuses on complex mitral and aortic valve repair, thoracic aortic surgery, cardiopulmonary transplantation, and minimally invasive surgery.

    He has advanced these fields by developing innovative surgical procedures. He serves as principal investigator on two studies funded by National Institutes of Health (NIH) grants. One explores stem cells, angiogenesis, tissue engineering, and valvular biomechanics. Dr. Woo has received NIH funding for this study continuously since 2004.

    He has served as primary investigator for clinical device trials. He also has been the primary investigator for translational scientific clinical trials entailing administration of stem cells during coronary artery bypass grafting and left ventricular arterial device (LVAD) implantation.

    Dr. Woo has co-authored more than 400 articles in peer-reviewed publications.
    Dr. Woo serves on the board of directors of the American Association for Thoracic Surgery (AATS). He is the president of the AATS Cardiac Surgery Biology Club. He is a fellow of the American College of Surgeons, American College of Cardiology, and American Heart Association. He serves on the leadership committee of the American Heart Association’s Council on Cardiovascular Surgery and Anesthesia.

    He is a member of the Society of Thoracic Surgeons, International Society for Minimally Invasive Cardiac Surgery, International Society for Heart & Lung Transplantation, International Society for Heart Research, and other professional societies.