School of Humanities and Sciences
Showing 31-40 of 139 Results
-
Marcus Feldman
Burnet C. and Mildred Finley Wohlford Professor
Current Research and Scholarly InterestsHuman genetic and cultural evolution, mathematical biology, demography of China
-
Russell D. Fernald
Benjamin Scott Crocker Professor of Human Biology, Emeritus
Current Research and Scholarly InterestsIn the course of evolution,two of the strongest selective forces in nature,light and sex, have left their mark on living organisms. I am interested in how the development and function of the nervous system reflects these events. We use the reproductive system to understand how social behavior influences the main system of reproductive action controlled by a collection of cells in the brain containing gonodotropin releasing hormone(GnRH)
-
Chris Field
Melvin and Joan Lane Professor of Interdisciplinary Environmental Studies, Director, Woods Institute for the Environment & Professor of Earth System Science, of Biology and Senior Fellow at the Woods Institute and at the Precourt Institute
Current Research and Scholarly InterestsResearch
My field is climate-change science, and my research emphasizes human-ecological interactions across many disciplines. Most studies include aspects of ecology, but also aspects of law, sociology, medicine, or engineering. -
Hunter Fraser
Professor of Biology
Current Research and Scholarly InterestsWe study the evolution of complex traits by developing new experimental and computational methods.
Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing. -
Judith Frydman
Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics
Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.
-
Tadashi Fukami
Professor of Biology and of Earth System Science
Current Research and Scholarly InterestsEcological and evolutionary community assembly, with emphasis on understanding historical contingency in community structure, ecosystem functioning, biological invasion and ecological restoration, using experimental, theoretical, and comparative methods involving bacteria, protists, fungi, plants, and animals.
-
Benjamin Good
Assistant Professor of Applied Physics and, by courtesy, of Biology
BioBenjamin Good is a theoretical biophysicist with a background in experimental evolution and population genetics. He is interested in the short-term evolutionary dynamics that emerge in rapidly evolving microbial populations like the gut microbiome. Technological advances are revolutionizing our ability to peer into these evolving ecosystems, providing us with an increasingly detailed catalog of their component species, genes, and pathways. Yet a vast gap still remains in understanding the population-level processes that control their emergent structure and function. Our group uses tools from statistical physics, population genetics, and computational biology to understand how microscopic growth processes and genome dynamics at the single cell level give rise to the collective behaviors that can be observed at the population level. Projects range from basic theoretical investigations of non-equilibrium processes in microbial evolution and ecology, to the development of new computational tools for measuring these processes in situ in both natural and experimental microbial communities. Through these specific examples, we seek to uncover unifying theoretical principles that could help us understand, forecast, and eventually control the ecological and evolutionary dynamics that take place in these diverse scenarios.