School of Humanities and Sciences


Showing 11-20 of 21 Results

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor in the School of Engineering and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Steven Kivelson

    Steven Kivelson

    Professor of Physics

    BioRESEARCH INTERESTS:

    How do the interactions between the vastly many electrons in solids produce the emergent phenomena we recognize as the macroscopic behavior of the materials we encounter in everyday life, and in the exotic materials and devices we engineer in the laboratory?

    The central source of intellectual vitality and practical importance of condensed matter physics is the richness and diversity of behaviors exhibited by strongly interacting systems with many degrees of freedom, ranging from the collective behavior of neurons in the brain to the collective condensation of Cooper pairs that produce the macroscopic quantum phenomena associated with superconducting order.

    The main thrust of the research carried out by Professor Kivelson is the search for theoretical characterization of qualitatively new behaviors of interacting electrons (i.e., new states of matter)as well as new regimes of parameters in which familiar states of matter behave in new and different ways. In particular, he seeks to explore; qualitatively...the relation between the microscopic interactions between electrons and the effective parameters that control the macroscopic behavior of solids.

    Current areas of Focus:

    - theory of quantum liquid crystalline phases of highly correlated electronic fluids
    - intertwined orders and the theory of high temperature superconductivity
    - theory of spin liquids and other fractionalized quantum phases
    - theory of the glass transition in super cool liquids

  • Richard Klein

    Richard Klein

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor of Anthropology and of Biology

    Current Research and Scholarly InterestsCoevolution of human form and behavior over the past 6-7 million years, with special emphasis on the emergence of fully modern humans in the past 60-50,000 years. Field and lab research in South Africa.

  • Eric Kool

    Eric Kool

    The George A. and Hilda M. Daubert Professor in Chemistry
    On Leave from 01/01/2021 To 03/31/2021

    Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
    • Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
    • Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation

  • Ron Kopito

    Ron Kopito

    Professor of Biology
    On Leave from 10/01/2020 To 03/31/2021

    Current Research and Scholarly InterestsOur laboratory use state-of-the-art cell biological, genetic and systems-level approaches to understand how proteins are correctly synthesized, folded and assembled in the mammalian secretory pathway, how errors in this process are detected and how abnormal proteins are destroyed by the ubiquitin-proteasome system.

  • Chao-Lin Kuo

    Chao-Lin Kuo

    Professor of Physics and of Particle Physics and Astrophysics

    Current Research and Scholarly Interests1. Searching/measuring primordial gravitational waves in the CMB (Cosmic Microwave Background) through experiments at the South Pole (BICEP and SPT), high plateaus in Tibet (AliCPT) and Atacama (Simons Observatory), as well as in space (LiteBIRD).

    2. Development and applications of superconducting detector and readout systems in astrophysics, cosmology, and other areas.

    3. Novel detector concepts for axion searches (https://youtu.be/UBscQSFzpLE)