School of Humanities and Sciences


Showing 1-10 of 179 Results

  • Steven M. Block

    Steven M. Block

    The Stanford W. Ascherman, M.D., Professor and Professor of Applied Physics and of Biology, Emeritus

    Current Research and Scholarly InterestsSingle molecule biophysics using optical trapping and fluorescence

  • Charlotte Bøttcher

    Charlotte Bøttcher

    Assistant Professor of Applied Physics

    BioCharlotte is joining the Stanford faculty in 2025 as an assistant professor of Applied Physics. Charlotte received her BSc degree in physics in 2016 from the Niels Bohr institute in Copenhagen where she focused on studying quantum phases transitions in two-dimensional Josephson junction arrays. She then moved to the US and finished her PhD in physics at Harvard University in 2022. Her general passion is to work at the intersection between condensed matter physics and quantum information, and during her PhD Charlotte also spent time at IBM Quantum. After her PhD, she joined Qulab at Yale University as a postdoc where she worked on hybrid material systems for quantum information.

  • Mark Brongersma

    Mark Brongersma

    Stephen Harris Professor, Professor of Materials Science and Engineering and, by courtesy, of Applied Physics

    BioMark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD in Materials Science from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. During this time, he coined the term “Plasmonics” for a new device technology that exploits the unique optical properties of nanoscale metallic structures to route and manipulate light at the nanoscale. His current research is directed towards the development and physical analysis of nanostructured materials that find application in nanoscale electronic and photonic devices. Brongersma received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the Optical Society of America, the SPIE, and the American Physical Society.

  • Philip Bucksbaum

    Philip Bucksbaum

    Marguerite Blake Wilbur Professor of Natural Science and Professor of Photon Science, of Applied Physics and of Physics

    BioPhil Bucksbaum holds the Marguerite Blake Wilbur Chair in Natural Science at Stanford University, with appointments in Physics, Applied Physics, and in Photon Science at SLAC. He conducts his research in the Stanford PULSE Institute (https://web.stanford.edu/~phbuck). He and his wife Roberta Morris live in Menlo Park, California. Their grown daughter lives in Toronto.

    Bucksbaum was born and raised in Iowa, and graduated from Harvard in 1975. He attended U.C. Berkeley on a National Science Foundation Graduate Fellowship and received his Ph.D. in 1980 for atomic parity violation experiments under Professor Eugene Commins, with whom he also has co-authored a textbook, “Weak Interactions of Leptons and Quarks.” In 1981 he joined Bell Laboratories, where he pursued new applications of ultrafast coherent radiation from terahertz to vacuum ultraviolet, including time-resolved VUV ARPES, and strong-field laser-atom physics.

    He joined the University of Michigan in 1990 and stayed for sixteen years, becoming Otto Laporte Collegiate Professor and then Peter Franken University Professor. He was founding Director of FOCUS, a National Science Foundation Physics Frontier Center, where he pioneered research using ultrafast lasers to control quantum systems. He also launched the first experiments in ultrafast x-ray science at the Advanced Photon Source at Argonne National Lab. In 2006 Bucksbaum moved to Stanford and SLAC, and organized the PULSE Institute to develop research utilizing the world’s first hard x-ray free-electron laser, LCLS. In addition to directing PULSE, he has previously served as Department Chair of Photon Science and Division Director for Chemical Science at SLAC. His current research is in laser interrogation of atoms and molecules to explore and image structure and dynamics on the femtosecond scale. He currently has more than 250 publications.

    Bucksbaum is a Fellow of the APS and the Optical Society, and has been elected to the National Academy of Sciences and the American Academy of Arts and Sciences. He has held Guggenheim and Miller Fellowships, and received the Norman F. Ramsey Prize of the American Physical Society for his work in ultrafast and strong-field atomic and molecular physics. He served as the Optical Society President in 2014, and also served as the President of the American Physical Society in 2020. He has led or participated in many professional service activities, including NAS studies, national and international boards, initiatives, lectureships and editorships.

  • Robert Byer

    Robert Byer

    William R. Kenan, Jr. Professor, Emeritus

    BioRobert L. Byer has served as President of The American Physical Society, of the Optical Society of America and of the IEEE LEOS. He has served as Vice Provost and Dean of Research at Stanford. He has been Chair of the Department of Applied Physics, Director of the Edward L. Ginzton Laboratory and Director of the Hansen Experimental Physics Laboratory. He is a founding member of the California Council on Science and Technology and served as Chair from 1995-1999. He was a member of the Air Force Scientific Advisory Board from 2002-2006 and has been a member of the National Ignition Facility since 2000.

    Robert L. Byer has conducted research and taught classes in lasers and nonlinear optics at Stanford University since 1969. He has made extraordinary contributions to laser science and technology including the demonstration of the first tunable visible parametric oscillator, the development of the Q-switched unstable resonator Nd:YAG laser, remote sensing using tunable infrared sources and precision spectroscopy using Coherent Anti Stokes Raman Scattering (CARS). Current research includes precision laser measurements in support of the detection of gravitational waves and laser “Accelerator on a chip”.