School of Humanities and Sciences
Showing 1-20 of 327 Results
-
Hans Andersen
David Mulvane Ehrsam and Edward Curtis Franklin Professor in Chemistry, Emeritus
BioProfessor Emeritus Hans C. Andersen applies statistical mechanics to develop theoretical understanding of the structure and dynamics of liquids and new computer simulation methods to aid in these studies.
He was born in 1941 in Brooklyn, New York. He studied chemistry as an undergraduate, then physical chemistry as a doctoral candidate at the Massachusetts Institute of Technology (B.S. 1962, Ph.D. 1966). At MIT he first learned about using a combination of mathematical techniques and the ideas of statistical mechanics to investigate problems of chemical and physical interest. This has been the focus of his research ever since. He joined the Stanford Department of Chemistry as Assistant Professor in 1968, and became Professor of Chemistry in 1980. He was named David Mulvane Ehrsam and Edward Curtis Franklin Professor in Chemistry in 1994. Professor Andersen served as department chairman from 2002 through 2005. Among many honors, his work has been recognized in the Theoretical Chemistry Award and Hildebrand Award in Theoretical and Experimental Chemistry of Liquids from the American Chemical Society, as well as the Dean's Award for Distinguished Teaching and Walter J. Gores Award for Excellence in Teaching at Stanford. He has been elected a member of the National Academy of Sciences, and a fellow of both the American Academy of Arts and Sciences and American Association for the Advancement of Science.
Professor Andersen’s research program has used both traditional statistical mechanical theory and molecular dynamics computer simulation. Early in his career, he was one of the developers of what has come to be known as the Weeks-Chandler-Andersen theory of liquids, which is a way of understanding the structure, thermodynamics, and dynamics of simple dense liquids. Later, he developed several new simulation techniques – now in common use – for exploring the behavior of liquids, such as simulation of a system under constant pressure and/or temperature. He used computer simulations of normal and supercooled liquids to study the temperature dependence of molecular motion in liquids, crystallization in supercooled liquids, and the structure of amorphous solids.
Professor Andersen also developed and analyzed a class of simple lattice models, called facilitated kinetic Ising models, which were then widely used by others to provide insight into the dynamics of real liquids. He simulated simple models of rigid rod polymers to understand the dynamics of this type of material. More recently, in collaboration with Professor Greg Voth of the University of Chicago, he has applied statistical mechanical ideas to the development of coarse grained models of liquids and biomolecules. Such models can be used to simulate molecular systems on long time scales. He has also used mode coupling theory to describe and interpret experiments on rotational relaxation in supercooled liquids and nematogens, in collaboration with Professor Michael Fayer of the Stanford Chemistry Department. -
Steven Banik
Assistant Professor of Chemistry
BioSteven Banik’s research interests center on rewiring mammalian biology and chemical biotechnology development using molecular design and construction. Projects in the Banik lab combine chemical biology, organic chemistry, protein engineering, cell and molecular biology to precisely manipulate the biological machines present in mammalian cells. Projects broadly aim to perform new functions that shed light on regulatory machinery and the potential scope of mammalian biology. A particular focus is the study of biological mechanisms that can be coopted by synthetic molecules (both small molecules and proteins). These concepts are applied to develop new therapeutic strategies for treating aging-related disorders, genetic diseases, and cancer.
Prior to joining the faculty at Stanford, Steven was a NIH and Burroughs CASI postdoctoral fellow advised by Prof. Carolyn Bertozzi at Stanford. His postdoctoral research developed approaches for targeted protein degradation from the extracellular space with lysosome targeting chimeras (LYTACs). He received his Ph.D. from Harvard University in 2016, where he worked with Prof. Eric Jacobsen on synthetic methods for the selective, catalytic difluorination of organic molecules and new approaches for generating and controlling reactive cationic intermediates in asymmetric catalysis. -
Zhenan Bao
K. K. Lee Professor and Professor, by courtesy, of Materials Science and Engineering and of Chemistry
BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 80 US patents with a Google Scholar H-index 215.
Bao is a member of the US National Academy of Sciences, National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.
Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.
Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001.