School of Humanities and Sciences
Showing 21-30 of 304 Results
-
Steven Boxer
Camille Dreyfus Professor of Chemistry
Current Research and Scholarly InterestsPlease visit my website for complete information:
http://www.stanford.edu/group/boxer/ -
Megan Brennan
Advanced Lecturer
BioDr. Megan Brennan's interests include the development of organic chemistry lab courses that give students hands-on opportunities to explore chemistry while reinforcing and building upon concepts learned in lecture classes. She aims for her labs to bring chemistry to life, and to afford students a chance to have fun and experience a taste of scientific discovery.
While studying chemistry at Lafayette College (B.S. 2002), Dr. Brennan worked on the preparation of triazaphenanthrenes and the Oxa–Pictet–Spengler reaction of 1-(3-furyl)alkan-2-ols. She completed her doctoral work at Stanford (Ph.D. 2008), conducting her thesis research in palladium asymmetric allylic alkylation under the advisement of Professor Barry Trost. During her postdoctoral research with Professor Scott Miller at Yale University, she investigated the use of peptides containing a thiazole side chain for use in acyl anion chemistry. She joined the teaching staff at University of California, Berkeley in 2010 before coming returning to Stanford in 2011 to spearhead the development of a new summer organic chemistry sequence, a comprehensive course designed for pre-meds, offering an entire year of organic chemistry in nine weeks.
Dr. Brennan also acts as the liaison to the chemistry majors, to promote events with faculty in both the academic and social aspect: providing an environment that allows students to be comfortable and able to learn, while helping them take advantage of every opportunity that Stanford offers.
Dr. Brennan's current research is in the development classroom experiments that bring cutting edge industrial and academic research into the undergraduate laboratory experience. -
Noah Burns
Associate Professor of Chemistry
Current Research and Scholarly InterestsResearch in our group explores the boundaries of modern organic synthesis to enable the more rapid creation of the highest molecular complexity in a predictable and controllable fashion. We are particularly inspired by natural products not only because of their importance as synthetic targets but also due to their ability to serve as invaluable identifiers of unanswered scientific questions.
One major focus of our research is selective halogenation of organic molecules. Dihalogenation and halofunctionalization encompass some of the most fundamental transformations in our field, yet methods capable of accessing relevant halogenated motifs in a chemo-, regio-, and enantioselective fashion are lacking.
We are also interested in the practical total synthesis of natural products for which there is true impetus for their construction due to unanswered chemical, medicinal, biological, or biophysical questions. We are specifically engaged in the construction of unusual lipids with unanswered questions regarding their physical properties and for which synthesis offers a unique opportunity for study. -
Leah B. Bushin
Assistant Professor of Chemistry
BioLeah Bushin is a chemical biologist and natural products chemist working at the interface of primary and secondary metabolism and leverages these insights to discover and produce novel natural products.
The Bushin research group will investigate novel metabolic pathways, enzymes, and bioactive molecules across all kingdoms of life, intending to repurpose them to address challenges in human health and environmental sustainability. Current efforts will primarily center on developing strategies for the efficient microbial production of compounds and materials at scale, as well as high-throughput approaches for engineering enzymes to perform synthetic reactions. More broadly, as the group designs and refines bioproduction platforms, they hope to deepen their fundamental understanding of cellular metabolism. With genome sequencing revealing an immense reservoir of untapped biosynthetic potential, their work aims to uncover and harness nature’s chemical diversity for drug discovery and synthetic derivatization.