School of Humanities and Sciences


Showing 341-355 of 355 Results

  • Yingtong "Amanda" WU

    Yingtong "Amanda" WU

    Lecturer

    BioI am a plant ecologist, botanist, and naturalist. I am broadly interested in microbial ecology, canopy ecology, and their intersections with the traditional ecological knowledge (TEK) of Native Americans. I completed my Ph.D. in Ecology, Evolution, and Systematics with the Ricklefs Lab at the University of Missouri - St. Louis. I am currently a postdoc researcher at the Fukami Lab, Stanford University, where I will be applying my analytical skills in microbial DNA sequencing to understand: (1) the community assembly of monkeyflower nectar microbes and (2) the effects of wildfires and prescribed burning on microbial communities associated with California oaks.

    My previous and ongoing research projects include:‚Äč
    FIRES AND TRADITIONAL ECOLOGICAL KNOWLEDGE
    SPECIES RANGE SIZES AND SPECIES RARITY
    SOIL MICROBIAL COMMUNITIES
    SPECIES DELIMITATION AND GENE FLOW
    CANOPY ECOLOGY

  • Yan Xia

    Yan Xia

    Associate Professor of Chemistry

    Current Research and Scholarly InterestsPolymer Chemistry, Microporous Polymer Membranes, Responsive Polymers, Degradable Polymers, Polymers with Unique Mechanical Behaviors, Polymer Networks, Organic Electronic Materials

  • Shicong Xie

    Shicong Xie

    Basic Life Research Scientist

    Current Research and Scholarly InterestsI use 4D imaging to study cell growth and cell cycle progression in epithelial organoid models and in intact mice.

  • Mason Yearian

    Mason Yearian

    Professor of Physics, Emeritus

    BioMason received his PhD in physics at Stanford University. Later, he served as an assistant professor, associate professor, and professor at Stanford. Past research includes developing detectors for X-ray and gamma ray astronomy, and work on the GRO/EGRET experiments. Mason also developed a computer-based curriculum for teaching introductory physics courses in high schools and universities.

  • Richard Zare

    Richard Zare

    Marguerite Blake Wilbur Professor of Natural Science and Professor, by courtesy, of Physics

    Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.

    Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.

    Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:

    The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.

    Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.

  • Evgeny Zatulovskiy

    Evgeny Zatulovskiy

    Basic Life Research Scientist

    Current Research and Scholarly InterestsCell cycle and cell size control in animal cells

  • Alfred Zong

    Alfred Zong

    Acting Assistant Professor, Physics

    BioI will be joining the Physics and Applied Physics departments as an assistant professor in September 2024, where my group focuses on the study of light-induced non-equilibrium phenomena in quantum materials. To capture the ultrafast dynamics on the nanoscale, we develop a variety of techniques such as ultrafast electron diffraction and microscopy, attosecond transient absorption spectroscopy, and coherent diffraction imaging. These time-resolved probes are integrated with a complex sample environment such as in-situ strain and electrostatic gating in order to design, discover, and understand non-equilibrium phases of quantum materials.

    We are seeking motivated undergraduates, graduate students, and postdocs to join the group. Please email me directly to discuss opportunities.

    For more details, check out the group website at https://zonglab.stanford.edu/