School of Medicine


Showing 1-10 of 18 Results

  • Amir Bahmani, PhD

    Amir Bahmani, PhD

    Research and Development Lead, Genetics

    BioAmir Bahmani is a Research and Development Lead at Stanford School of Medicine. He has been working on distributed and parallel computing applications since 2008. Amir received his PhD in computer science from North Carolina State University. He collaborates with different universities (e.g., NC State, Duke University, University of North Carolina, Stanford University) on several computationally intensive applications. In the past, he has also worked on industry cloud computing projects with Impulsonic and Illumina. He served as the vice-president of the Computer Science Graduate Student Association at NC State. He received the graduate student leadership award in 2016. He enjoys taking walks in nature, and studying cancer biology in his spare time.

  • Julie Baker

    Julie Baker

    Professor of Genetics

    Current Research and Scholarly InterestsOur laboratory is focused on identifying proteins based upon their ability to alter a variety of cell fate decisions - including mesodermal, endodermal, neural, endothelial, and somitic - within the vertebrate embryo.

  • Maria Barna

    Maria Barna

    Assistant Professor of Genetics and of Developmental Biology

    Current Research and Scholarly InterestsOur lab studies how intricate control of gene expression and cell signaling is regulated on a minute-by-minute basis to give rise to the remarkable diversity of cell types and tissue morphology that form the living blueprints of developing organisms. Work in the Barna lab is presently split into two main research efforts. The first is investigating ribosome-mediated control of gene expression genome-wide in space and time during cellular differentiation and organismal development. This research is opening a new field of study in which we apply sophisticated mass spectrometry, computational biology, genomics, and developmental genetics, to characterize a ribosome code to gene expression. Our research has shown that not all of the millions of ribosomes within a cell are the same and that ribosome heterogeneity can diversify how genomes are translated into proteomes. In particular, we seek to address whether fundamental aspects of gene regulation are controlled by ribosomes harboring a unique activity or composition that are tuned to translating specific transcripts by virtue of RNA regulatory elements embedded within their 5’UTRs. The second research effort is centered on employing state-of-the-art live cell imaging to visualize cell signaling and cellular control of organogenesis. This research has led to the realization of a novel means of cell-cell communication dependent on a dense network of actin-based cellular extension within developing organs that interconnect and facilitate the precise transmission of molecular information between cells. We apply and create bioengineering tools to manipulate such cellular interactions and signaling in-vivo.

  • Greg Barsh

    Greg Barsh

    Professor of Genetics and of Pediatrics, Emeritus

    Current Research and Scholarly InterestsGenetics of color variation

  • Michael Bassik

    Michael Bassik

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsMy laboratory is focused on (1) the development of new technologies for high-throughput functional genomics using the CRISPR/Cas9 system, and (2) application of these tools to study the cellular response to drugs and endocytic pathogens (such as bacteria, viruses, and protein toxins). Fascinating in themselves, these pathogens also help illuminate basic cell biology. A complementary interest is in the identification of new drug targets and combinations to combat cancer and neurodegeneration.

  • Jon Bernstein

    Jon Bernstein

    Associate Professor of Pediatrics (Genetics) at the Lucile Salter Packard Children's Hospital and, by courtesy, of Genetics

    Current Research and Scholarly InterestsMy interests include the genetics of autism and other developmental disorders. In collaboration with colleagues at Stanford, I am working to develop induced pluripotent stem cell (iPSC) models of genetic disorders associated with developmental disability. I am also engaged in the application of new technologies (Whole genome sequencing, Multi-omics profiling) for the diagnosis of developmental disorders.