School of Medicine
Showing 1-20 of 50 Results
-
Jacqueline Genovese
Academic Prog Prof 3, School of Medicine - Biomedical Ethics
Current Role at StanfordExecutive Director of the Medicine & the Muse Program
LEAD Program for Residents, Mentor
Member of Stanford School of Medicine JEDI Collective
Member SCBE Diversity Committee
Steering Committee Member: Health Humanities Consortium
Teaching Lead, War Literature & Writing class for military affiliated students
Co-teacher, War and Fiction for non military and military affiliated students
Facilitator, Literature & Medicine Dinner & Discussion Series
Co-lead Stuck@Home Concert series
Co-Lead: Frankenstein@200 2017-2018 Initiative
Stanford Supervisory Academy (completed) -
Paul George, MD, PhD
Associate Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsCONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.
BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.
APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes. -
William Gibb, MD
Fellow in Anesthesiology, Perioperative and Pain Medicine
Affiliate, Department FundsBioEmergency medicine resident with research interests in medical education, emergency airway management, and critical care
-
Natasha Abadilla Glenn
Affiliate, Department Funds
Resident in NeurologyCurrent Research and Scholarly Interestsglobal health, public health, health disparities, advocacy, pediatric neurology