School of Medicine


Showing 11-20 of 76 Results

  • Sneha Ramakrishna

    Sneha Ramakrishna

    Assistant Professor of Pediatrics (Hematology/Oncology)

    BioSneha Ramakrishna obtained her B. A. from the University of Chicago and her M.D. from the Cleveland Clinic Lerner College of Medicine at Case Western Reserve University. In medical school, through the Howard Hughes Medical Research Scholar Award, she joined Dr. Crystal Mackall’s laboratory, where she designed and developed various GD2 CAR-Ts and tested them in preclinical models. During her residency training in Pediatrics at the Children’s Hospital of Philadelphia, she cared for some of the first patients treated with CD19 CAR T cells, learning the power of this therapy first-hand. During her fellowship in Pediatric Hematology/Oncology at the Johns Hopkins/National Cancer Institute combined program, she worked with Dr. Terry Fry. She evaluated the mechanism of CD22 CAR T cell relapse in patients by developing an antigen escape model and establishing a deeper understanding of the effects of antigen density on CAR-T phenotype, expansion, and persistence (Fry…Ramakrishna…Mackall Nat Med, 2018; Ramakrishna, et al., Clinical Cancer Research, 2019). Since arriving at Stanford, Dr. Ramakrishna leads an interdisciplinary team that designs, develops, and successfully implements a robust correlative science platform for our novel CAR-T therapies. Analyzing patient samples from our first-in-human GD2 CAR-T trial (NCT04196413) treating a universally fatal cancer, diffuse midline glioma (DMG), we identified that intracerebroventricular CAR-T administration correlates with enhanced pro-inflammatory cytokines and reduced immunosuppressive cell populations in cerebrospinal fluid as compared to intravenous CAR-T administration (Majzner*, Ramakrishna*, et al., Nature 2022 *co-first authors). Her research program evaluates unique sets of patient samples using novel single-cell immune profiling to identify the drivers of CAR-T success or failure. Building on these findings, her team assesses approaches to enhance CAR-T efficacy and translate these findings to the clinic.

    Clinically, Dr. Ramakrishna cares for children with solid tumors and treats hematologic, solid, and brain tumor pediatric patients with CAR T cell therapies in the Cancer Cellular Therapies program.

  • Mahalakshmi Ramamurthy

    Mahalakshmi Ramamurthy

    Basic Life Research Scientist, Peds/Developmental-Behavioral Pediatrics

    BioI am a postdoctoral scholar working with Dr. Jason Yeatman. With a background in vision science, psychophysics and developmental cognitive neuroscience my long-term goal is to study the intersection of basic visual mechanisms and various neurodevelopmental disorders and to extend this understanding in creating effective early screening tools, and in advancing evidence-based therapeutic and remediation programs. Inherent to this interest is the need for developmental data in large and demographically diverse populations. I strongly believe that such inclusive research not only contributes to scientific advancements but can go beyond to bridge health and education disparities.

    https://sites.google.com/view/maha-ramamurthy/bio

  • Anoop Rao

    Anoop Rao

    Clinical Associate Professor, Pediatrics - Neonatal and Developmental Medicine

    Current Research and Scholarly InterestsWearable senors, unobtrusive vital sign monitoring, natural language processing/text mining

  • Rameshwar (Ram) Rao MD PhD

    Rameshwar (Ram) Rao MD PhD

    Instructor, Pediatrics - Hematology & Oncology
    Affiliate, Pediatrics - Hematology/Oncology

    BioMy scientific training spans over a decade of published research in the fields of vascularized bone tissue engineering, biomineralization, gene therapy, and spectral ultrasound. I earned my BS from UC Davis and MS/PhD in Biomedical Engineering at the University of Michigan. I have aimed to form highly collaborative and multidisciplinary research groups at each level of training. This work has resulted in 21 publications, award-winning manuscripts, and multiple national conference research awards. My successful research career began during my undergraduate studies where my work in Prof. Kent Leach’s lab resulted in 3 publications and the Department of Biomedical Engineering Outstanding Undergraduate Research Award. My graduate thesis under the guidance of Prof. Jan Stegemann resulted in 12 publications (7 as first author) in high quality, peer-reviewed journals in the fields of engineering and biotechnology. My graduate studies were funded by an NIH T32 Training grant and the NSF Graduate Research Fellowship. My graduate work culminated in the 2013 Outstanding PhD Research Award from the Society for Biomaterials (SFB) and the 2013 Outstanding Student Award from the Tissue Engineering and Regenerative Medicine Society (TERMIS). Recognizing the gap in translation of bioengineering research into clinical practice, I opted to pursue an MD at the University of Michigan to become the physician-scientist that identifies clinical problems, engineers the solution, and delivers it back to the patient to advance treatments and improve survival outcomes. My success continued through medical school with 4 clinical research manuscripts and Graduation with Distinction in Research, awarded to 10% of the class.

    In the next phase of my training, I will complete my fellowship in Pediatric Hematology/Oncology at Stanford through the Accelerated Research Pathway by the American Board of Pediatrics. Prof. Sarah Heilshorn, Associate Chair of Materials Science at Stanford, will be my primary research and career development mentor. Together, we have designed an innovative approach targeting the extracellular matrix to improve survival outcomes in pediatric osteosarcoma.

  • Lindsey Rasmussen

    Lindsey Rasmussen

    Clinical Associate Professor, Pediatrics - Critical Care
    Clinical Associate Professor (By courtesy), Neurology & Neurological Sciences

    Current Research and Scholarly InterestsMy research interests reside in the field of Neurocritical Care Medicine. My research focus has included inflammation following traumatic brain injury, outcome prediction after cardiac arrest, and neuro-monitoring in the pediatric intensive care setting. These interests are integrated clinically to focus on the merging of specialized neurologic monitoring and care with prognostic efforts in critically ill patients.