School of Medicine
Showing 1-10 of 21 Results
-
Raya Saab
Lindhard Family Professor of Pediatric Cancer Biology
BioOur laboratory focuses on investigating molecular mechanisms of oncogene-induced tumorigenesis and tumor suppressor pathways, and oncogenic signaling in the pediatric solid tumor rhabdomyosarcoma. Our earlier work identified the tumor suppressors p53 and p18Ink4c as inhibitors of Cyclin D1-driven tumorigenesis in a pineoblastoma model, through senescence induction, and highlighted distinct roles for the the RB and p53 pathways in induction and maintenance of oncogene-induced senescence. We also identified CDK2 as a potential target for inducing senescence in premalignant lesions to inhibit tumor progression.
Our current focus is on studying oncogenic signaling and tumor suppression in the childhood tumor rhabdomyosarcoma, to identify key mediators of invasion and metastasis, which is the most common cause of treatment failure clinically. We use preclinical in vitro and in vivo models, including murine and human cell lines, and mouse models of disease.
We have recently uncovered a paracrine role for rhabdomyosarcoma-secreted exosomes in impacting biology of stromal cells. Rhabdomyosarcoma-derived exosomes carry specific miRNA cargo that imparts an invasive and migratory phenotype on normal recipient fibroblasts, and proteomic analysis revealed specific and unique pathways relevant to the two different molecular rhabdomyosarcoma subtypes that are driven by distinct oncogenic pathways. We identified that the driver oncogene in fusion-positive rhabdomyosarcoma, PAX3-FOXO1, modulates exosome cargo to promote invasion, migration, and angiogenic properties, and identified specific microRNA and protein cargo acting as effectors of PAX3-FOXO1 exosome-mediated signaling, including modulation of oxidative stress response and cell survival signaling.
Our ongoing work is focused on interrogating specific paracrine signaling pathways and molecular mechanisms of metastatic disease progression in rhabdomyosarcoma, for potential therapeutic targeting. -
Julien Sage
Elaine and John Chambers Professor of Pediatric Cancer and Professor of Genetics
Current Research and Scholarly InterestsWe investigate the mechanisms by which normal cells become tumor cells, and we combine genetics, genomics, and proteomics approaches to investigate the differences between the proliferative response in response to injury and the hyperproliferative phenotype of cancer cells and to identify novel therapeutic targets in cancer cells.
-
Kathleen M. Sakamoto
Shelagh Galligan Professor in the School of Medicine
Current Research and Scholarly InterestsMy research focuses on the molecular pathways that regulate normal and aberrant blood cell development, including acute leukemia and bone marrow failure syndromes. We are also studying novel drugs for treatment of cancer.
-
Liora Schultz
Clinical Assistant Professor, Pediatrics - Hematology & Oncology
BioI am currently postdoctoral research fellow pursuing immunotherapy research in the oncology department at Stanford University. My clinical training as a pediatric hematology oncology fellow at Memorial Sloan Kettering Cancer Center highlighted the desperate need for novel therapeutic options for a subtype of aggressive pediatric leukemia, Acute Myeloid Leukemia (AML). Despite our best standard of care for AML, long term survival rates range from 50-60% with an unacceptably high relapse rate of 40%. The urgent need for novel treatments inspired me to pursue a research project in adoptive immunotherapy, genetically modifying Tcells to express artificial T cell receptors, termed chimeric antigen receptors (CARs), that target AML specific antigens. In parallel to my clinical training, I constructed an AML specific CAR and demonstrated its ability to redirect T cell function mediating eradication of AML cells. As the field of CAR therapy rapidly advances, novel methods to optimize this therapeutic modality are imperative. To this end, supported by research demonstrating superior antitumor function of naïve derived effector T cells compared to central memory derived effector T cells, I am investigating whether preferential modification of naïve T cells to express CARs will generate a T cell subpopulation with increased efficacy. Consolidating my clinical and research experiences within highly academic institutes allows me to synthesize my pursuit of scientific rigor and commitment to the field of oncology, with a mission to achieve productive research and translatable results.