School of Medicine


Showing 1-10 of 82 Results

  • Masataka Wada

    Masataka Wada

    Postdoctoral Scholar, Psychiatry

    BioDr. Masataka (he/him/his) is a postdoctoral scholar in the Department of Psychiatry & Behavioral Sciences at the Stanford University School of Medicine. He is a board-certified psychiatrist and holds a PhD in neuroscience.

    His clinical and research interests center on psychiatric disorders in treatment-resistant conditions. To address these challenges, Dr. Masataka is engaged in exploring electrophysiological, neuroimaging, and neuromodulation techniques, including repetitive Transcranial Magnetic Stimulation (rTMS) and Deep Brain Stimulation (DBS). He spearheaded a significant Randomized Controlled Trial (RCT) that involved 180 patients with treatment-resistant depression, aiming to develop an innovative rTMS-based treatment. His efforts have led to him receiving awards at international conferences on three occasions for his significant contributions.

    Dr. Masataka's scholarly work includes publications on the electrophysiological characteristics of psychiatric disorders and the effects of neuromodulation on clinical symptoms and neuroimaging features. Additionally, he has been the recipient of two scholarships and three grants, further highlighting his contributions to the field.

  • Bing Wang

    Bing Wang

    Postdoctoral Scholar, Stem Cell Transplantation

    BioMy academic training and research experience have equipped me with multidisciplinary skills and knowledge of molecular biology and immunology.

    I led two projects when I was an undergraduate, in which I got primary academic learning. My team member and I investigated the bacteria content in drinking water from two types of machines that are commonly used in colleges under the guidance of our experimental microbiology teacher Zhihong Zhong. Secondly, we produced a hybridoma cell line secreting monoclonal antibody against the core antigen of the hepatitis C virus (HCV) to develop an ELISA kit for the detection of HCV under the guidance of Dr. Rushi Liu and Minjing Liao.

    Thereafter, as a Ph. D. candidate at Xiaoming Feng’s lab, my research primarily focused on understanding the biology of regulatory T cells (Treg) and CD11c+ myeloid cells using cutting-edge single-cell sequencing and conditional knockout mice under healthy and disease conditions. We first revealed the heterogeneity and bifurcated differentiation pathway of human Tregs from normal donors and transplanted patients at the single-cell transcriptome level. A subsequent first and corresponding author publication identified a key innate responsive protein in CD11c+ alveolar macrophages, NRP2, that protects mice from lung injury via promoting the phagocytosis of neutrophils. I also participated in two projects regarding the role of a serine/threonine kinase, LKB1, in mice CD11c+ dendritic cells from lymphoid tissues and adipose tissue with diet-induced obesity. These academic experiences guided me into a strong passion and independent capacities for biomedical studies.

    For my postdoctoral training, I will focus on developing Treg therapies and genetic stem cell therapy to cure patients with IPEX syndrome (a severe autoimmune disease) at preclinical and clinical stages, and other immune disorders. My sponsor Dr. Rosa Bacchetta is a well-known leader in treating IPEX patients and developing Treg therapies. My co-mentor Dr. Maria Grazia Roncarolo is a well-recognized pediatric immunologist and also one of the pioneers in the stem cell and gene therapy field, who discovered the type 1 regulatory T cells or Tr1 cells and translate the scientific discoveries into novel Treg therapies. Both of them have an excellent record of training postdoctoral fellows. The proposed projects will provide me with great opportunities in cutting-edge technology and translational research and outline a set of career development including grant writing, public presentation, and lab management, which will enhance my ability to become an independent investigator and help me to reach my goal of developing efficient and safe Treg therapies for a wide range of immune disorders and associated human diseases.