School of Medicine
Showing 21-40 of 115 Results
-
Gilbert Chu
Professor of Medicine (Oncology) and of Biochemistry
Current Research and Scholarly InterestsAfter shuttering the wet lab, we have focused on: a point-of-care device to measure blood ammonia and prevent brain damage; a human protein complex that juxtaposes and joins DNA ends for repair and V(D)J recombination; and strategies for teaching students and for reducing selection bias in educational programs.
-
Karlene Cimprich
Professor of Chemical and Systems Biology and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsGenomic instability contributes to many diseases, but it also underlies many natural processes. The Cimprich lab is focused on understanding how mammalian cells maintain genomic stability in the context of DNA replication stress and DNA damage. We are interested in the molecular mechanisms underlying the cellular response to replication stress and DNA damage as well as the links between DNA damage and replication stress to human disease.
-
Rhiju Das
Professor of Biochemistry
Current Research and Scholarly InterestsOur lab seeks an agile and predictive understanding of how nucleic acids and proteins code for information processing in living systems. We develop new computational & chemical tools to enable the precise modeling, regulation, and design of RNA and RNA/protein machines.
-
Ronald W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.
-
Sebastian Duno-Miranda
Postdoctoral Scholar, Biochemistry
BioPlease see https://duno-miranda.org
-
Rahim Esfandyarpour
Student, Biochemistry - Genome Center
BioRahim Esfandyarpour received his M.Sc. and Ph.D. in Electrical Engineering from Stanford University in 2010 and 2014 respectively.
-
James Ferrell
Professor of Chemical and Systems Biology and of Biochemistry
Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.
-
Alex Gao
Assistant Professor of Biochemistry and of Microbiology and Immunology
Current Research and Scholarly InterestsWe integrate computational genome mining with high-throughput experimental approaches and structural biology to harness the rich diversity of genes from microbes, with the goal of developing new antibiotic strategies and molecular biotechnology. A major area of current interest is uncovering novel molecular functions involved in anti-phage defense and bacteria–phage interactions, which are a major driver of molecular innovation in nature.
-
Yingjie Guo
Postdoctoral Fellow, Biochemistry
BioProfessional Education
Doctor of Philosophy, Chinese Academy Of Sciences (2023)
Doctor, Institute of Zoology, Chinese Academy of Sciences, Regenerative medicine -
Pehr Harbury
Associate Professor of Biochemistry
Current Research and Scholarly InterestsScientific breakthroughs often come on the heels of technological advances; advances that expose hidden truths of nature, and provide tools for engineering the world around us. Examples include the telescope (heliocentrism), the Michelson interferometer (relativity) and recombinant DNA (molecular evolution). Our lab explores innovative experimental approaches to problems in molecular biochemistry, focusing on technologies with the potential for broad impact.