School of Medicine
Showing 1-19 of 19 Results
-
Stephen A. Baccus
Professor of Neurobiology
Current Research and Scholarly InterestsWe study how the neural circuitry of the vertebrate retina encodes visual information and performs computations. To control and measure the retinal circuit, we present visual images while performing simultaneous two-photon imaging and multielectrode recording. We perturb the circuit as it operates using simultaneous intracellular current injection and multielectrode recording, and use the resulting large data sets to construct models of retinal computation.
-
Thomas Clandinin
Shooter Family Professor
Current Research and Scholarly InterestsThe Clandinin lab focuses on understanding how neuronal circuits assemble and function to perform specific computations and guide behavior. Taking advantage of a rich armamentarium of genetic tools available in the fruit fly, combined with imaging, physiology and analytical techniques drawn from systems neuroscience, we examine a variety of visual circuits.
-
Shaul Druckmann
Associate Professor of Neurobiology, of Psychiatry and Behavioral Sciences and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsOur research goal is to understand how dynamics in neuronal circuits relate and constrain the representation of information and computations upon it. We adopt three synergistic strategies: First, we analyze neural circuit population recordings to better understand the relation between neural dynamics and behavior, Second, we theoretically explore the types of dynamics that could be associated with particular network computations. Third, we analyze the structural properties of neural circuits.
-
Surya Ganguli
Associate Professor of Applied Physics, Senior Fellow at the Stanford Institute for HAI and Associate Professor, by courtesy, of Neurobiology and of Electrical Engineering
Current Research and Scholarly InterestsTheoretical / computational neuroscience
-
Lisa Giocomo
Professor of Neurobiology
Current Research and Scholarly InterestsMy laboratory studies the cellular and molecular mechanisms underlying the organization of cortical circuits important for spatial navigation and memory. We are particularly focused on medial entorhinal cortex, where many neurons fire in spatially specific patterns and thus offer a measurable output for molecular manipulations. We combine electrophysiology, genetic approaches and behavioral paradigms to unravel the mechanisms and behavioral relevance of non-sensory cortical organization. Our first line of research is focused on determining the cellular and molecular components crucial to the neural representation of external space by functionally defined cell types in entorhinal cortex (grid, border and head direction cells). We plan to use specific targeting of ion channels, combined with in vivo tetrode recordings, to determine how channel dynamics influence the neural representation of space in the behaving animal. A second, parallel line of research, utilizes a combination of in vivo and in vitro methods to further parse out ionic expression patterns in entorhinal cortices and determine how gradients in ion channels develop. Ultimately, our work aims to understand the ontogenesis and relevance of medial entorhinal cortical topography in spatial memory and navigation.
-
Keren Haroush
Assistant Professor of Neurobiology
Current Research and Scholarly InterestsOur laboratory studies the mechanisms by which highly complex behaviors are mediated at the neuronal level, mainly focusing on the example of dynamic social interactions and the neural circuits that drive them. From dyadic interactions to group dynamics and collective decision making, the lab seeks a mechanistic understanding for the fundamental building blocks of societies, such as cooperation, empathy, fairness and reciprocity.
-
Andrew D. Huberman
Associate Professor of Neurobiology and, by courtesy, of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsIn 2017, we developed a virtual reality platform to investigate the neural and autonomic mechanisms contributing to fear and anxiety. That involved capturing 360-degree videos of various fear-provoking situations in real life for in-lab VR movies, such as heights and claustrophobia, as well as unusual scenarios like swimming in open water with great white sharks. The primary objective of our VR platform is to develop new tools to help people better manage stress, anxiety and phobias in real-time, as an augment to in-clinic therapies.
In May 2018, we reported the discovery of two novel mammalian brain circuits as a Research Article published in Nature. One circuit promotes fear and anxiety-induced paralysis, while the other fosters confrontational reactions to threats. This led to ongoing research into the involvement of these brain regions in anxiety-related disorders such as phobias and generalized anxiety in humans.
In 2020, we embarked on a collaborative effort with Dr. David Spiegel's laboratory in the Stanford Department of Psychiatry and Behavioral Sciences, aimed to explore how specific respiration patterns synergize with the visual system to influence autonomic arousal and stress, and other brain states, including sleep.
In 2023, the first results of that collaboration were published as a randomized controlled trial in Cell Reports Medicine, demonstrating that specific brief patterns of deliberate respiration are particularly effective in alleviating stress and enhancing mood, and improving sleep.
In a 2021, our collaboration with Dr. Edward Chang, professor and chair of the Department of Neurological Surgery at the University of California, San Francisco (UCSF), was published in Current Biology, revealing that specific patterns of insular cortex neural activity may be linked to, and potentially predict, anxiety responses. -
Eric I. Knudsen
Edward C. and Amy H. Sewall Professor in the School of Medicine, Emeritus
Current Research and Scholarly InterestsCellular mechanisms of spatial attention and learning, studied in the central nervous system in birds, using behavioral, systems, cellular and molecular techniques.
-
Michael Lin
Associate Professor of Neurobiology, of Bioengineering and, by courtesy, of Chemical and Systems Biology
On Partial Leave from 07/01/2024 To 12/31/2024Current Research and Scholarly InterestsOur lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.
-
Liqun Luo
Ann and Bill Swindells Professor and Professor, by courtesy, of Neurobiology
Current Research and Scholarly InterestsWe study how neurons are organized into specialized circuits to perform specific functions and how these circuits are assembled during development. We have developed molecular-genetic and viral tools, and are combining them with transcriptomic, proteomic, physiological, and behavioral approaches to study these problems. Topics include: 1) assembly of the fly olfactory circuit; 2) assembly of neural circuits in the mouse brain; 3) organization and function of neural circuits; 4) Tool development.
-
Uel Jackson McMahan
Professor of Neurobiology and of Structural Biology, Emeritus
Current Research and Scholarly InterestsWe are currently investigating mechanisms involved in synaptic transmission and synaptogenesis using electron microscope tomography in ways that provide in situ 3D structural information at macromolecular resolution.
-
Lloyd B. Minor, MD
The Carl and Elizabeth Naumann Dean of the School of Medicine, Vice President for Medical Affairs, Stanford University, Professor of Otolaryngology - Head and Neck Surgery and Professor of Neurobiology and of Bioengineering, by courtesy
Current Research and Scholarly InterestsThrough neurophysiological investigations of eye movements and neuronal pathways, Dr. Minor has identified adaptive mechanisms responsible for compensation to vestibular injury in a model system for studies of motor learning. Following his discovery of superior canal dehiscence, he published a description of the disorder’s clinical manifestations and related its cause to an opening in the bone covering of the superior canal. He subsequently developed a surgical procedure to correct the problem.
-
Tirin Moore
Ben Barres Professor
Current Research and Scholarly InterestsWe study neural mechanisms of visual-motor integration and the neural basis of cognition (e.g. attention). We study the activity of single neurons in visual and motor structures within the brain, examine how perturbing that activity affects neurons in other brain structures, and also how it affects the perceptual and
-
William Newsome
Harman Family Provostial Professor and Professor of Neurobiology and, by courtesy, of Psychology
Current Research and Scholarly InterestsNeural processes that mediate visual perception and visually-based decision making. Influence of reward history on decision making.
-
Jennifer L. Raymond
Berthold and Belle N. Guggenhime Professor
Current Research and Scholarly InterestsWe study the neural mechanisms of learning, using a combination of behavioral, neurophysiological, and computational approaches. The model system we use is a form of cerebellum-dependent learning that regulates eye movements.
-
Nirao Shah
Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator), of Neurobiology and, by courtesy, of Obstetrics and Gynecology
Current Research and Scholarly InterestsWe study how our brains generate social interactions that differ between the sexes. Such gender differences in behavior are regulated by sex hormones, experience, and social cues. Accordingly, we are characterizing how these internal and external factors control gene expression and neuronal physiology in the two sexes to generate behavior. We are also interested in understanding how such sex differences in the healthy brain translate to sex differences in many neuro-psychiatric illnesses.
-
Carla Shatz
Sapp Family Provostial Professor and Professor of Biology and of Neurobiology
On Leave from 09/01/2024 To 08/31/2025Current Research and Scholarly InterestsThe goal of research in the Shatz Laboratory is to discover how brain circuits are tuned up by experience during critical periods of development both before and after birth by elucidating cellular and molecular mechanisms that transform early fetal and neonatal brain circuits into mature connections. To discover mechanistic underpinnings of circuit tuning, the lab has conducted functional screens for genes regulated by neural activity and studied their function for vision, learning and memory.
-
Longzhi Tan
Assistant Professor of Neurobiology
Current Research and Scholarly InterestsThe Tan Lab studies the single-cell 3D genome architectural basis of neurodevelopment and aging by developing the next generation of in vivo multi-omic assays and algorithms, and applying them to the human and mouse cerebellum.