SLAC National Accelerator Laboratory


Showing 51-77 of 77 Results

  • Anders R. Nilsson

    Anders R. Nilsson

    Professor of Photon Science, Emeritus

    BioAnders Nilsson interests covers the application of synchrotron radiation to studies of surfaces and in liquids with a focus on studies catalytic processes in fuel cells, photoelectrochemical decomposition of water, CO2 reduction, chemical bonding on surfaces, structure of liquid water and aqueous solutions, interfacial processes of relevance to molecular environmental science and ultrafast processes on surfaces and in water.

  • Michael Peskin

    Michael Peskin

    Professor of Particle Physics and Astrophysics

    BioI am a theoretical physicist interested in elementary particles and the fundamental interactions. My main research interests are:

    consequences of the "Standard Model of particle physics"

    precision study of the heaviest known elementary particles - the W and Z bosons, the top quark, and the Higgs boson - to search for clues to new fundamental interactions beyond the Standard Model

    models of such new interactions, especially models with composite or strongly interacting Higgs bosons

    models for the particle that composes the dark matter of the universe

    I am the author of a leading textbook in this area, "An Introduction to Quantum Field Theory", with Daniel Schroeder. My new textbook, "Concepts of Elementary Particle Physics", should be appearing soon.

    For further information about my research activities, interests, Stanford courses, and related subjects, please see my web page: http://www.slac.stanford.edu/~mpeskin/

  • Piero Pianetta

    Piero Pianetta

    Professor (Research) of Photon Science and of Electrical Engineering

    BioPianetta's research is directed towards understanding how the atomic and electronic structure of semiconductor interfaces impacts device technology pertaining to advanced semiconductors and photocathodes. His research includes the development of new analytical tools for these studies based on the use of synchrotron radiation. These include the development of ultrasensitive methods to analyze trace impurities on the surface of silicon wafers at levels as low as 1e-6 monolayer (~1e8 atoms/cm2) and the use of various photoelectron spectroscopies (X-ray photoemission, NEXAFS, X-ray standing waves and photoelectron diffraction) to determine the bonding and atomic structure at the interface between silicon and different passivating layers. Recent projects include the development of high resolution (~30nm) x-ray spectromicroscopy with applications to energy materials such as Li batteries.

  • Charles Prescott

    Charles Prescott

    Professor at the Stanford Linear Accelerator Center, Emeritus

    Current Research and Scholarly InterestsExperimental particle physics; parity violation in electron scattering experiments in End Station A; nucleon spin structure experiments with polarized electron beams and polarized solid targets; e+e- -> Zo studies with the SLD detector using the polarized electron beams of the SLC; Next Linear Collider detector studies; neutrinoless double beta decay in Xenon.

  • Helen Quinn

    Helen Quinn

    Professor of Particle Physics and Astrophysics, Emerita

    BioHelen Quinn received her Ph.D in physics at Stanford in 1967. She has taught physics at both Harvard and Stanford. Dr. Quinn work as a particle physicist has been honored by the Dirac Medal (from the International Center for Theoretical Physics, Italy) and the Klein Medal (from The Swedish National Academy of Sciences and Stockholm University) as well as the Sakurai Prize (from the American Physical Society), the Compton medal (from the American Institute of Physics, awarded once every 4 years) and the 2018 Benjamin Franklin Medal for Physics (from the Franklin Institute). She is a member of the American Academy of Arts and Sciences, the National Academy of Science and the American Philosophical Society. She is a Fellow and former president of the American Physical Society. She is originally from Australia and is an Honorary Officer of the Order of Australia.

    Dr. Quinn has been active in science education for some years, and since her retirement in 2010 this has been her major activity. She was a founding member of the Contemporary Physics Education Project (CPEP) which produced a well-known standard-model poster for schools in 1987 (see photo). She served as Chair of the US National Academy of Sciences Board on Science Education (BOSE) from 2009-2014. She was as a member of the BOSE study committee that developed the report “Taking Science to School” and chaired the committee for the “Framework for K-12 Science Education”, which is the basis of the Next Generation Science Standards (NGSS) and similar standards now adopted by about 30 states in the US, and has been influential internationally as well. She also contributed to follow-up NRC studies on assessment and implementation of NGSS. From 2015-2018 Helen served at the request of the President of Ecuador as a member of the “Comision Gestora” to help plan and guide the initial development of the National University of Education of Ecuador.

  • Srinivas Raghu

    Srinivas Raghu

    Associate Professor of Physics and of Photon Science

    BioI am interested in the emergent behavior of quantum condensed matter systems. Some recent research topics include non-Fermi liquids, quantum criticality, statistical mechanics of strongly interacting and disordered quantum systems, physics of the half-filled Landau level, quantum Hall to insulator transitions, superconductor-metal-insulator transitions, and the phenomenology of quantum materials.

    Past contributions that I'm particularly proud of include the co-founding of the subject of topological photonics (with Duncan Haldane), scaling theories of non-Fermi liquid metals (with Shamit Kachru and Gonzalo Torroba), Euclidean lattice descriptions of Chern-Simons matter theories and their dualities in 2+1 dimensions (with Jing-Yuan Chen and Jun Ho Son), and 'dual' perspectives of quantum Hall transitions (with Prashant Kumar and Michael Mulligan).

  • Aaron Roodman

    Aaron Roodman

    Professor of Particle Physics and Astrophysics

    BioAaron Roodman is a professor of Particle Physics & Astrophysics at Stanford’s SLAC National Accelerator Laboratory. Trained in experimental particle physics, he spent two decades studying differences between Matter and antiMatter, before turning his research to astrophysics and cosmology. Roodman’s current research focuses on the study of Dark Energy using images from large optical telescope surveys, such as the Dark Energy Survey and the upcoming Legacy Survey of Space and Time. He is also responsible for the assembly and testing of the world’s largest digital camera, the Vera C. Rubin Observatory's LSST Camera.

  • Philip Schuster

    Philip Schuster

    Professor of Particle Physics and Astrophysics

    BioProfessor Schuster is a theoretical physicist focused on identifying dark matter and its properties, developing concepts for new experimental tests of physics beyond the Standard Model, and studying novel theories of long-range forces. He is also directly involved in several experimental efforts as co-spokesperson for APEX, a founding member and physics coordinator for LDMX, and as a founding member of HPS.

    Prospective graduate students interested in research rotations should contact Professor Schuster directly. Recent research directions include new ideas to detect axions, milli-charge dark matter, the use of novel accelerator experiments to search for light WIMP-like dark matter, and generalizations of gauge theories that include massless particles with continuous spin. Publications are listed on INSPIRE.

    Professor Schuster is also chair of the Particle Physics & Astrophysics department at Stanford’s SLAC National Accelerator Laboratory.

  • Georgios Skiniotis

    Georgios Skiniotis

    Professor of Molecular and Cellular Physiology, of Structural Biology and of Photon Science

    BioThe Skiniotis laboratory seeks to resolve structural and mechanistic questions underlying biological processes that are central to cellular physiology. Our investigations employ primarily cryo-electron microscopy (cryoEM) and 3D reconstruction techniques complemented by biochemistry, biophysics and simulation methods to obtain a dynamic view into the macromolecular complexes carrying out these processes. The main theme in the lab is the structural biology of cell surface receptors that mediate intracellular signaling and communication. Our current main focus is the exploration of the mechanisms responsible for transmembrane signal instigation in cytokine receptors and G protein coupled receptor (GPCR) complexes.

  • Edward I. Solomon

    Edward I. Solomon

    Monroe E. Spaght Professor of Chemistry and Professor of Photon Science

    Current Research and Scholarly InterestsProf. Solomon's work spans physical-inorganic, bioinorganic, and theoretical-inorganic chemistry, focusing on spectroscopic elucidation of the electronic structure of transition metal complexes and its contribution to reactivity. He has advanced our understanding of metal sites involved in electron transfer, copper sites involved in O2 binding, activation and reduction to water, structure/function correlations over non-heme iron enzymes, and correlation of biological to heterogeneous catalysis.

  • Hirohisa A. Tanaka

    Hirohisa A. Tanaka

    Professor of Particle Physics and Astrophysics

    Current Research and Scholarly InterestsParticle physics and astrophysics, neutrino properties, dark matter

  • Sami Gamal-Eldin Tantawi

    Sami Gamal-Eldin Tantawi

    Professor of Particle Physics and Astrophysics
    On Leave from 09/01/2022 To 04/01/2023

    BioFor over a decade I have advocated for dedicated research efforts on the basic physics of room temperature high gradient structures and new initiatives for the associated RF systems. This required demanding multidisciplinary collaboration to harness limited resources. The basic elements of the research needed to be inclusive to address not only the fundamentals of accelerator structures but also the fundamentals of associated technologies such as RF manipulation and novel microwave power sources. These basic research efforts were not bundled with specific developments for an application or a general program. The emerging technologies promise a broad, transformational impact.

    With this underlying philosophy in mind, in 2006 the US High Gradient Research Collaboration for which I am the spokesman was formed. SLAC is the host of this collaboration, which comprises MIT, ANL, University of Maryland and University of Colorado, NRL and a host of SBIR companies. This led to the revitalization of this research area worldwide. The international collaborative effort grew to include KEK in Japan, INFN, Frascati in Italy, the Cockcroft Institute in the UK, and the CLIC team at CERN.

    This effort led to a new understanding of the geometrical effects affecting high gradient operations. The collaborative work led to new advances in understanding the gradient limits of photonic band gap structures. Now we have a new optimization methodology for accelerator structure geometries and ongoing research on alternate and novel materials. These efforts doubled the usable gradient in normal conducting high gradient linacs to more than 100 MV/m, thus revitalizing the spread of the technology to other applications including compact Inverse Compton Scattering gamma-ray sources for national security applications, and compact proton linacs for cancer therapy.

  • Soichi Wakatsuki

    Soichi Wakatsuki

    Professor of Photon Science and of Structural Biology

    Current Research and Scholarly InterestsUbiquitin signaling: structure, function, and therapeutics
    Ubiquitin is a small protein modifier that is ubiquitously produced in the cells and takes part in the regulation of a wide range of cellular activities such as gene transcription and protein turnover. The key to the diversity of the ubiquitin roles in cells is that it is capable of interacting with other cellular proteins either as a single molecule or as different types of chains. Ubiquitin chains are produced through polymerization of ubiquitin molecules via any of their seven internal lysine residues or the N-terminal methionine residue. Covalent interaction of ubiquitin with other proteins is known as ubiquitination which is carried out through an enzymatic cascade composed of the ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The ubiquitin signals are decoded by the ubiquitin-binding domains (UBDs). These domains often specifically recognize and non-covalently bind to the different ubiquitin species, resulting in distinct signaling outcomes.
    We apply a combination of the structural (including protein crystallography, small angle x-ray scattering, cryo-electron microscopy (Cryo-EM) etc.), biocomputational and biochemical techniques to study the ubiquitylation and deubiquitination processes, and recognition of the ubiquitin chains by the proteins harboring ubiquitin-binding domains. Current research interests including SARS-COV2 proteases and their interactions with polyubiquitin chains and ubiquitin pathways in host cell responses, with an ultimate goal of providing strategies for effective therapeutics with reduced levels of side effects.

    Protein self-assembly processes and applications.
    The Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular, self-assembly by crystallizing when exposed to an environmental trigger. We have demonstrated that the Caulobacter crescentus SLP readily crystallizes into sheets both in vivo and in vitro via a calcium-triggered multistep assembly pathway. Observing crystallization using a time course of Cryo-EM imaging has revealed a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. In particular, this is inspiring designing robust novel platform for nano-scale protein scaffolds for structure-based drug design and nano-bioreactor design for the carbon-cycling enzyme pathway enzymes. Current research focuses on development of nano-scaffolds for high throughput in vitro assays and structure determination of small and flexible proteins and their interaction partners using Cryo-EM, and applying them to cancer and anti-viral therapeutics.

    Multiscale imaging and technology developments.
    Multimodal, multiscale imaging modalities will be developed and integrated to understand how molecular level events of key enzymes and protein network are connected to cellular and multi-cellular functions through intra-cellular organization and interactions of the key machineries in the cell. Larger scale organization of these proteins will be studied by solution X-ray scattering and Cryo-EM. Their spatio-temporal arrangements in the cell organelles, membranes, and cytosol will be further studied by X-ray fluorescence imaging and correlated with cryoEM and super-resolution optical microscopy. We apply these multiscale integrative imaging approaches to biomedical, and environmental and bioenergy research questions with Stanford, DOE national labs, and other domestic and international collaborators.

  • William Weis

    William Weis

    William M. Hume Professor in the School of Medicine, Professor of Structural Biology, of Molecular and Cellular Physiology and of Photon Science

    Current Research and Scholarly InterestsOur laboratory studies molecular interactions that underlie the establishment and maintenance of cell and tissue structure. Our principal areas of interest are the architecture and dynamics of intercellular adhesion junctions, signaling pathways that govern cell fate determination, and determinants of cell polarity. Our overall approach is to reconstitute macromolecular assemblies with purified components in order to analyze them using biochemical, biophysical and structural methods.