Stanford Doerr School of Sustainability
Showing 1-10 of 29 Results
-
Amanda Jackson
Ph.D. Student in Geological Sciences, admitted Autumn 2022
BioI’ve long been fascinated with volcanoes, and my research interests broadly include igneous petrology, trans-crustal magmatic systems, high temperature geochemistry, and geo/thermochronology. My first PhD project explores the formation of Catalina Island and investigates pluton assembly in continental rift settings. In my free time, I enjoy hiking, camping, backpacking, reading, yoga, and playing with my cat, Carl.
-
Rob Jackson
Michelle and Kevin Douglas Provostial Professor and Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy
BioRob Jackson and his lab examine the many ways people affect the Earth. They seek basic scientific knowledge and use it to help shape policies and reduce the environmental footprint of global warming, energy extraction, and other issues. They're currently examining the effects of climate change and drought on old-growth forests. They are also working to measure and reduce greenhouse gas emissions through the Global Carbon Project (globalcarbonproject.org), which Jackson chairs. Examples of new research Rob leads include establishing a global network of methane tower measurements across the Amazon and at more than 100 sites worldwide and measuring and reducing methane emissions and air pollution from oil and gas wells, city streets, and homes and buildings.
Rob's new book on climate solutions, Into the Clear Blue Sky (Scribner and Penguin Random House) publishes July 30th, 2024. As an author and photographer, Rob has published a previous trade book about the environment (The Earth Remains Forever, University of Texas Press), two books of children’s poems, Animal Mischief and Weekend Mischief (Highlights Magazine and Boyds Mills Press), and recent or forthcoming poems in the journals Southwest Review, Cortland Review, Cold Mountain Review, Atlanta Review, LitHub, and more. His photographs have appeared in many media outlets, including the NY Times, Washington Post, USA Today, US News and World Report, Science, Nature, and National Geographic News.
Rob is a current Djerassi artist in residence and a recent Guggenheim Fellow and sabbatical visitor in the Center for Advanced Study in the Behavioral Sciences. He is also a Fellow in the American Academy of Arts and Sciences, American Association for the Advancement of Science, American Geophysical Union, and Ecological Society of America. He received a Presidential Early Career Award in Science and Engineering from the National Science Foundation, awarded at the White House. -
Mark Z. Jacobson
Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment
BioMark Z. Jacobson’s career has focused on better understanding air pollution and global warming problems and developing large-scale clean, renewable energy solutions to them. Toward that end, he has developed and applied three-dimensional atmosphere-biosphere-ocean computer models and solvers to simulate air pollution, weather, climate, and renewable energy. He has also developed roadmaps to transition states and countries to 100% clean, renewable energy for all purposes and computer models to examine grid stability in the presence of high penetrations of renewable energy.
-
Thomas Jaramillo
Professor of Chemical Engineering, of Energy Science Engineering, and of Photon Science
On Leave from 10/01/2024 To 06/30/2025BioRecent years have seen unprecedented motivation for the emergence of new energy technologies. Global dependence on fossil fuels, however, will persist until alternate technologies can compete economically. We must develop means to produce energy (or energy carriers) from renewable sources and then convert them to work as efficiently and cleanly as possible. Catalysis is energy conversion, and the Jaramillo laboratory focuses on fundamental catalytic processes occurring on solid-state surfaces in both the production and consumption of energy. Chemical-to-electrical and electrical-to-chemical energy conversion are at the core of the research. Nanoparticles, metals, alloys, sulfides, nitrides, carbides, phosphides, oxides, and biomimetic organo-metallic complexes comprise the toolkit of materials that can help change the energy landscape. Tailoring catalyst surfaces to fit the chemistry is our primary challenge.