Stanford University


Showing 31-40 of 73 Results

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • James Ferrell

    James Ferrell

    Professor of Chemical and Systems Biology and of Biochemistry

    Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.

  • Thomas Fingar

    Thomas Fingar

    Lecturer

    Current Research and Scholarly InterestsChinese domestic and foreign policy, US-China relations, US foreign policy, intelligence analysis, mega-trends and global challenges, geopolitical consequences of climate change

  • Chelsea Finn

    Chelsea Finn

    Assistant Professor of Computer Science and of Electrical Engineering
    On Partial Leave from 04/01/2024 To 06/30/2024

    BioChelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University, and the William George and Ida Mary Hoover Faculty Fellow. Professor Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. Her work lies at the intersection of machine learning and robotic control, including topics such as end-to-end learning of visual perception and robotic manipulation skills, deep reinforcement learning of general skills from autonomously collected experience, and meta-learning algorithms that can enable fast learning of new concepts and behaviors. Professor Finn received her Bachelors degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, an NSF graduate fellowship, a Facebook fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across three universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.

    Website: https://ai.stanford.edu/~cbfinn

  • David Fiorentino, MD, PhD

    David Fiorentino, MD, PhD

    Professor of Dermatology

    Current Research and Scholarly InterestsI am interested in all types of immune-mediated skin disease, with a focus on psoriasis and rheumatic skin disease. I co-direct a multi-disciplinary clinic dedicated to the care of patients with rheumatic skin diseases, such as lupus erythematosus, vasculitis, dermatyositis and scleroderma. I conduct multiple clinical trials and I participate in translational research with tissues obtained from a prospective cohort of patients with scleroderma, lupus, and dermatomyositis.

  • Andrew Fire

    Andrew Fire

    George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics

    Current Research and Scholarly InterestsWe study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".

  • Michael Fischbach

    Michael Fischbach

    Liu (Liao) Family Professor

    Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.

    1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.

    2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:

    Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?

    Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?

    3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing.

  • Daniel Fisher

    Daniel Fisher

    David Starr Jordan Professor

    Current Research and Scholarly InterestsEvolutionary & ecological dynamics & diversity, microbial, expt'l, & cancer

  • Ian Fisher

    Ian Fisher

    Professor of Applied Physics and, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsOur research focuses on the study of quantum materials with unconventional magnetic & electronic ground states & phase transitions. Emphasis on design and discovery of new materials. Recent focus on use of strain as a probe of, and tuning parameter for, a variety of electronic states. Interests include unconventional superconductivity, quantum phase transitions, nematicity, multipolar order, instabilities of low-dimensional materials and quantum magnetism.

  • Paul Graham Fisher, MD

    Paul Graham Fisher, MD

    Beirne Family Professor of Pediatric Neuro-Oncology, Professor of Pediatrics and, by courtesy, of Neurosurgery and of Epidemiology and Population Health

    Current Research and Scholarly InterestsClinical neuro-oncology: My research explores the epidemiology, natural history, and disease patterns of brain tumors and other cancers in childhood, as well as prospective clinical trials for treating these neoplasms. Research interests also include neurologic effects of cancer and its therapies.