Stanford University


Showing 221-240 of 540 Results

  • Hadi Hosseini

    Hadi Hosseini

    Associate Professor (Research) of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Science Research)

    Current Research and Scholarly InterestsOur lab’s research portfolio crosses multiple disciplines including computational neuropsychiatry, cognitive neuroscience, multimodal neuroimaging and neurocognitive rehabilitation. Our computational neuropsychiatry research mainly involves investigating alterations in the organization of connectome in various neurodevelopmental and neurocognitive disorders using state of the art neuroimaging techniques (fMRI, sMRI, DWI, functional NIRS) combined with novel computational methods (graph theoretical and multivariate pattern analyses).

    The ultimate goal of our research is to translate the findings from computational neuropsychiatry research toward developing personalized interventions. We have been developing personalized interventions that integrate computerized cognitive rehabilitation, real-time functional brain imaging and neurofeedback, as well as virtual reality (VR) tailored toward targeted rehabilitation of the affected brain networks in patients with neurocognitive disorders.

  • Roger Howe

    Roger Howe

    William E. Ayer Professor of Electrical Engineering, Emeritus

    BioDesign and fabrication of sensors and actuators using micro and nanotechnologies, with applications to information processing and energy conversion.

  • Yang Hu, MD, PhD

    Yang Hu, MD, PhD

    Professor of Ophthalmology

    Current Research and Scholarly InterestsThe ultimate goal of the laboratory is to develop efficient therapeutic strategies to achieve CNS neural repair, through promoting neuroprotection, axon regeneration and functional recovery.

    More specifically, we study retinal ganglion cell (RGC) and optic nerve in various optic neuropathies including traumatic, glaucomatous and inflammatory optic nerve injuries to fully understand the molecular mechanisms of CNS neurodegeneration and axon regeneration failure.

  • Ting-Ting Huang

    Ting-Ting Huang

    Associate Professor (Research) of Neurology (Adult Neurology)

    Current Research and Scholarly InterestsWe study the role of oxygen free radicals in oxidative tissue damage and degeneration. Our research tools include transgenic and knockout mice and tissue culture cells for in vitro gene expression.

  • Andrew D. Huberman

    Andrew D. Huberman

    Associate Professor of Neurobiology and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsIn 2017, we developed a virtual reality platform to investigate the neural and autonomic mechanisms contributing to fear and anxiety. That involved capturing 360-degree videos of various fear-provoking situations in real life for in-lab VR movies, such as heights and claustrophobia, as well as unusual scenarios like swimming in open water with great white sharks. The primary objective of our VR platform is to develop new tools to help people better manage stress, anxiety and phobias in real-time, as an augment to in-clinic therapies.

    In May 2018, we reported the discovery of two novel mammalian brain circuits as a Research Article published in Nature. One circuit promotes fear and anxiety-induced paralysis, while the other fosters confrontational reactions to threats. This led to ongoing research into the involvement of these brain regions in anxiety-related disorders such as phobias and generalized anxiety in humans.

    In 2020, we embarked on a collaborative effort with Dr. David Spiegel's laboratory in the Stanford Department of Psychiatry and Behavioral Sciences, aimed to explore how specific respiration patterns synergize with the visual system to influence autonomic arousal and stress, and other brain states, including sleep.

    In 2023, the first results of that collaboration were published as a randomized controlled trial in Cell Reports Medicine, demonstrating that specific brief patterns of deliberate respiration are particularly effective in alleviating stress and enhancing mood, and improving sleep.

    In a 2021, our collaboration with Dr. Edward Chang, professor and chair of the Department of Neurological Surgery at the University of California, San Francisco (UCSF), was published in Current Biology, revealing that specific patterns of insular cortex neural activity may be linked to, and potentially predict, anxiety responses.

  • John Huguenard

    John Huguenard

    Professor of Neurology (Neurology Research Faculty), of Neurosurgery (Adult Neurosurgery) and, by courtesy, of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsWe are interested in the neuronal mechanisms that underlie synchronous oscillatory activity in the thalamus, cortex and the massively interconnected thalamocortical system. Such oscillations are related to cognitive processes, normal sleep activities and certain forms of epilepsy. Our approach is an analysis of the discrete components (cells, synapses, microcircuits) that make up thalamic and cortical circuits, and reconstitution of components into in silico computational networks.

  • Keith Humphreys

    Keith Humphreys

    Esther Ting Memorial Professor

    Current Research and Scholarly InterestsDr. Humphreys researches individual and societal level interventions for addictive and psychiatric disorders. He focuses particularly on evaluating the outcomes of professionally-administered treatments and peer-operated self-help groups (e.g., Alcoholics Anonymous), and, analyzing the impact of public policies touching addiction, mental health, public health, and public safety.

  • Ruth Huttenhain

    Ruth Huttenhain

    Assistant Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsMy group deciphers how G protein-coupled receptors decode extracellular cues into dynamic and context-specific cellular signaling networks to elicit diverse physiologic responses. We exploit quantitative proteomics to capture the spatiotemporal organization of signaling networks combined with functional genomics to study their impact on physiology.

  • Robert K. Jackler, MD

    Robert K. Jackler, MD

    Edward C. and Amy H. Sewall Professor, Emeritus

    Current Research and Scholarly InterestsSince the early 2000s, study of tobacco industry marketing has become my primary field of research. Motivated by the lack of a comprehensive and well-organized compendium of tobacco advertisements, and the relative paucity of scholarly research analyzing the marketing practices of the industry, I chose to focus my research on advertising. The overarching purpose of my research has been to reveal the behavior of the tobacco industry in recruiting and retaining its consumers with the goal of infor

  • Siddhartha Jaiswal

    Siddhartha Jaiswal

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsWe identified a common disorder of aging called clonal hematopoiesis of indeterminate potential (CHIP). CHIP occurs due to certain somatic mutations in blood stem cells and represents a precursor state for blood cancer, but is also associated with increased risk of cardiovascular disease and death. We hope to understand more about the biology and clinical implications of CHIP using human and model system studies.

  • Daniel Jarosz

    Daniel Jarosz

    Associate Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly InterestsMy laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.

  • Julia Kaltschmidt

    Julia Kaltschmidt

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsThe lab’s primary research interest is to understand how specific neuronal circuits are established. We use mouse genetics, combinatorial immunochemical labeling and high-resolution laser scanning microscopy to identify, manipulate, and quantitatively analyze synaptic contacts within the complex neuronal milieu of the spinal cord and the enteric nervous system.

  • Makoto Kawai

    Makoto Kawai

    Clinical Associate Professor, Psychiatry and Behavioral Sciences - Sleep Medicine

    BioI am a physician scientist in the field of sleep medicine in aging and brain function. Using combined polysomnogram and novel neuroimaging technology, I aim to identify potential sleep biomarkers to investigate the mechanism of progression from normal aging to Mild Cognitive Impairment (MCI) or dementia. I also investigate the impact of sleep on cognitive/affective function or behavior abnormality in various neurodevelopmental and neurodegenerative disorders.

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor of Pediatrics, and Professor of Genetics

    Current Research and Scholarly InterestsMark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Corey Keller, MD, PhD

    Corey Keller, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    Current Research and Scholarly InterestsThe goal of my lab is to understand the fundamental principles of human brain plasticity and build trans-diagnostic real-time monitoring platforms for personalized neurotherapeutics.

    We use an array of neuroscience methods to better understand the basic principles of how to create change in brain circuits. We use this knowledge to develop more effective treatment strategies for depression and other psychiatric disorders.

  • Oussama Khatib

    Oussama Khatib

    Weichai Professor and Professor, by courtesy, of Electrical Engineering

    BioRobotics research on novel control architectures, algorithms, sensing, and human-friendly designs for advanced capabilities in complex environments. With a focus on enabling robots to interact cooperatively and safely with humans and the physical world, these studies bring understanding of human movements for therapy, athletic training, and performance enhancement. Our work on understanding human cognitive task representation and physical skills is enabling transfer for increased robot autonomy. With these core capabilities, we are exploring applications in healthcare and wellness, industry and service, farms and smart cities, and dangerous and unreachable settings -- deep in oceans, mines, and space.

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Butrus Khuri-Yakub

    Butrus Khuri-Yakub

    Professor (Research) of Electrical Engineering, Emeritus

    BioButrus (Pierre) T. Khuri-Yakub is a Professor of Electrical Engineering at Stanford University. He received the BS degree from the American University of Beirut, the MS degree from Dartmouth College, and the Ph.D. degree from Stanford University, all in electrical engineering. His current research interests include medical ultrasound imaging and therapy, ultrasound neuro-stimulation, chemical/biological sensors, gas flow and energy flow sensing, micromachined ultrasonic transducers, and ultrasonic fluid ejectors. He has authored over 600 publications and has been principal inventor or co-inventor of 107 US and international issued patents. He was awarded the Medal of the City of Bordeaux in 1983 for his contributions to Nondestructive Evaluation, the Distinguished Advisor Award of the School of Engineering at Stanford University in 1987, the Distinguished Lecturer Award of the IEEE UFFC society in 1999, a Stanford University Outstanding Inventor Award in 2004, Distinguished Alumnus Award of the School of Engineering of the American University of Beirut in 2005, Stanford Biodesign Certificate of Appreciation for commitment to educate, mentor and inspire Biodesgin Fellows, 2011, and 2011 recipient of IEEE Rayleigh award.