Stanford University


Showing 21-30 of 157 Results

  • Utkan Demirci

    Utkan Demirci

    Professor of Radiology (Diagnostic Sciences Laboratory) and, by courtesy, of Electrical Engineering
    On Partial Leave from 02/26/2024 To 02/25/2025

    BioDr. Utkan Demirci, UofM’99, Stanford’01’05’05, is a Professor of Radiology (with tenure) and of Electrical Engineering (by courtesy) at the Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, where he leads a productive researcher group. Utkan is a tenured professor at Stanford University School of Medicine. Prior to joining Stanford in 2014, he held the position of Associate Professor at the Brigham and Women’s Hospital-Harvard Medical School and also served at the Harvard-MIT Health Sciences and Technology division. Over the past decade, his research group has focused on the early detection of cancer and has made significant contributions to the development of microfluidic platforms for sorting rare cells and exosomes and point-of-care bio-sensing technologies.

    Dr. Demirci leads a productive and impactful research group focused on addressing problems from the clinic with innovations including cell sorter for IVF, optical technologies for detecting viruses, portable point of care technologies for diagnostics in global health, smart robots in vivo, extracellular vesicle based early detection approaches for cancer. He is an elected fellow of the American Institute of Medical and Biological Engineering and The Academy for Radiology & Biomedical Imaging Research Distinguished Investigator.

    He has published over 250 peer-reviewed articles, 300 abstracts and proceedings, 24 book chapters and editorials, and 7 edited books. He also serves on the editorial board of various journals. He holds 15 patents (11 of which are translated into broadly used biomedical products) and has co-founded multiple successful companies. Dr. Demirci's pioneering work in microfluidics and cell sorting has resulted in CE certified and FDA approved devices used in over 500,000 clinical cases serving patients globally.

  • Shaul Druckmann

    Shaul Druckmann

    Associate Professor of Neurobiology, of Psychiatry and Behavioral Sciences and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsOur research goal is to understand how dynamics in neuronal circuits relate and constrain the representation of information and computations upon it. We adopt three synergistic strategies: First, we analyze neural circuit population recordings to better understand the relation between neural dynamics and behavior, Second, we theoretically explore the types of dynamics that could be associated with particular network computations. Third, we analyze the structural properties of neural circuits.

  • John Duchi

    John Duchi

    Associate Professor of Statistics, of Electrical Engineering and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsMy work spans statistical learning, optimization, information theory, and computation, with a few driving goals: 1. To discover statistical learning procedures that optimally trade between real-world resources while maintaining statistical efficiency. 2. To build efficient large-scale optimization methods that move beyond bespoke solutions to methods that robustly work. 3. To develop tools to assess and guarantee the validity of---and confidence we should have in---machine-learned systems.

  • Robert Dutton

    Robert Dutton

    Robert and Barbara Kleist Professor in the School of Engineering, Emeritus

    BioDutton's group develops and applies computer aids to process modeling and device analysis. His circuit design activities emphasize layout-related issues of parameter extraction and electrical behavior for devices that affect system performance. Activities include primarily silicon technology modeling both for digital and analog circuits, including OE/RF applications. New emerging area now includes bio-sensors and the development of computer-aided bio-sensor design.

  • Abbas El Gamal

    Abbas El Gamal

    Hitachi America Professor in the School of Engineering

    BioAbbas El Gamal is the Hitachi America Professor in the School of Engineering and Professor in the Department of Electrical Engineering at Stanford University. He received his B.Sc. Honors degree from Cairo University in 1972, and his M.S. in Statistics and Ph.D. in Electrical Engineering both from Stanford University in 1977 and 1978, respectively. From 1978 to 1980, he was an Assistant Professor of Electrical Engineering at USC. From 2003 to 2012, he was the Director of the Information Systems Laboratory at Stanford University. From 2012 to 2017 he was Chair of the Department of Electrical Engineering at Stanford University. His research contributions have been in network information theory, FPGAs, and digital imaging devices and systems. He has authored or coauthored over 230 papers and holds 35 patents in these areas. He is coauthor of the book Network Information Theory (Cambridge Press 2011). He has received several honors and awards for his research contributions, including the 2016 Richard W. Hamming Medal, the 2012 Claude E. Shannon Award, and the 2004 INFOCOM Paper Award. He is a member of the U.S. National Academy of Engineering and a Fellow of the IEEE. He has co-founded and served on the board of directors and advisory boards of several semiconductor and biotechnology startup companies.

  • Dawson Engler

    Dawson Engler

    Associate Professor of Computer Science and of Electrical Engineering

    BioEngler's research focuses both on building interesting software systems and on discovering and exploring the underlying principles of all systems.

  • Jonathan Fan

    Jonathan Fan

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.

  • Shanhui Fan

    Shanhui Fan

    Joseph and Hon Mai Goodman Professor of the School of Engineering and Professor, by courtesy, of Applied Physics

    BioFan's research interests are in fundamental studies of nanophotonic structures, especially photonic crystals and meta-materials, and applications of these structures in energy and information technology applications