Stanford University


Showing 21-30 of 93 Results

  • Genevieve D'Souza

    Genevieve D'Souza

    Clinical Professor, Anesthesiology, Perioperative and Pain Medicine

    BioGenevieve D’souza MD, FASA is a Clinical Associate Professor in the Pediatric Anesthesia division of the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University. She is a Board-certified Pediatric Anesthesiologist , Fellowship trained Pediatric Pain Doctor, and trained in Medical Acupuncture.
    She is a practicing Chronic Pediatric Pain Doctor at Stanford Medicine Children's Health and is also part of the Acute Pain Service. She is the Interim Medical Director of the Pediatric Pain Division. She is also the Director of the Pediatric Anesthesia Resource Center at Lucile Packard Children’s Hospital.
    She is also the Senior Editor for the Visual Pearl Series For the Society of Pediatric Pain Medicine and on the Board of Directors for Society of Pediatric Pain Medicine.

  • Jeremy Dahl

    Jeremy Dahl

    Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsMy current research encompasses ultrasonic beamforming and image reconstruction methods, with application areas in improving ultrasound image quality in difficult-to-image patients and ultrasound molecular imaging of cancer. My lab also employs beamforming concepts to enhance other areas of ultrasound research.

  • Dylan Dodd

    Dylan Dodd

    Assistant Professor of Pathology and of Microbiology and Immunology
    On Leave from 01/05/2026 To 05/05/2026

    Current Research and Scholarly InterestsHarnessing the gut microbiome to treat human disease.

  • Noelle Hanako Ebel

    Noelle Hanako Ebel

    Clinical Associate Professor, Pediatrics - Gastroenterology

    Current Research and Scholarly InterestsCurrent projects include:
    -indications for combined heart-liver transplantation
    -mitigating perioperative bleeding during cardiac surgery in children with Alagille syndrome
    -congenital heart disease and liver transplantation
    -subspecialty advocacy

  • Carlos O. Esquivel, M.D., Ph.D.,FACS

    Carlos O. Esquivel, M.D., Ph.D.,FACS

    Arnold and Barbara Silverman Professor in Pediatric Transplantation and Professor of Surgery (Abdominal Transplantation) and of Pediatrics (Gastroenterology, Hepatology and Nutrition)

    Current Research and Scholarly Interests1) Induction of immunotolerance
    2) Rejection of liver and intestinal transplantation.
    3) Clinical outcomes of children with unresectable liver tumors.

  • Ryann Fame, PhD

    Ryann Fame, PhD

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsEarly neural progenitors respond to extrinsic cues that maintain and support their potency. These stem/ progenitor cells are in direct contact with the cerebrospinal fluid (CSF), which acts as part of their niche. Our research program encompasses the early neural stem cell niche, neural tube closure, CSF, metabolism, and cortical neuronal development. We are dedicated to broad collaboration focused on translating an understanding of neurodevelopment and CSF biology into regenerative strategies.

  • Nielsen Fernandez-Becker

    Nielsen Fernandez-Becker

    Clinical Professor, Medicine - Gastroenterology & Hepatology

    BioI am the director of the Celiac Disease Program at Stanford and I am highly experienced in diagnosis and management of celiac disease and gluten associated disorders.
    My objective is to provide excellent and compassionate clinical care for my patients while seeking a better understanding of diseases I treat, particularly Celiac disease (CeD), eosinophilic esophagitis (EoE). My top priorities are patient care and translational research to make new discoveries and improve the care my patients.

  • Michael Fischbach

    Michael Fischbach

    Liu (Liao) Family Professor

    Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.

    1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.

    2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:

    Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?

    Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?

    3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing.