Stanford University
Showing 11-20 of 22 Results
-
Roger Kornberg
Mrs. George A. Winzer Professor of Medicine
Current Research and Scholarly InterestsWe study the regulation of transcription, the first step in gene expression. The main lines of our work are 1) reconstitution of the process with more than 50 pure proteins and mechanistic analysis, 2) structure determination of the 50 protein complex at atomic resolution, and 3) studies of chromatin remodelling, required for transcription of the DNA template in living cells
-
Michael Levitt
Robert W. and Vivian K. Cahill Professor of Cancer Research
Current Research and Scholarly InterestsStanford Professor of Biophysics and Computational Biology, Cambridge PhD and DSc, 2013 Chemistry Nobel Laureate (complex systems), FRS & US National Academy member, I code well for my age.
-
David B. McKay
Professor of Structural Biology, Emeritus
Current Research and Scholarly InterestsThree-dimensional structure determination and biophysical studies of macromolecules.
-
Peter Parham
Professor of Structural Biology and, by courtesy, of Microbiology and Immunology
Current Research and Scholarly InterestsThe Parham laboratory investigates the biology, genetics, and evolution of MHC class I molecules and NK cell receptors.
-
Elisabetta Viani Puglisi
Associate Professor (Research) of Structural Biology
Current Research and Scholarly InterestsViral infections and subsequent host response depend on multiple RNA-protein interaction. My research focuses on the structural and functional characterization of RNA-protein complexes involved in viral infection. Current research aims to understand how the Human Immunodeficiency Virus (HIV) initiates its replication upon host infection. We use NMR spectroscopy and x-ray crystallography to study the structure of the initiation complex, formed by a host tRNA and HIV genomic RNA, coupled with biochemical and biophysical methods to understand functional properties. The goal of this research is to gain a molecular view of HIV replication initiation, and use this information to develop new therapeutic approaches to combat HIV.
-
Joseph (Jody) Puglisi
Jauch Professor and Professor of Structural Biology
Current Research and Scholarly InterestsThe Puglisi group investigates the role of RNA in cellular processes and disease. We investigate dynamics using single-molecule approaches. Our goal is a unified picture of structure, dynamics and function. We are currently focused on the mechanism and regulation of translation, and the role of RNA in viral infections. A long-term goal is to target processes involving RNA with novel therapeutic strategies.
-
Kacper Rogala
Assistant Professor of Structural Biology and of Chemical and Systems Biology
Current Research and Scholarly InterestsOur team is fascinated by how cells make growth decisions — to grow or not to grow. In order to grow, cells require nutrients, and we are unraveling how cells use specialized protein sensors and transporters to sense and traffic nutrients in between various compartments. We use approaches from structural biology, chemical biology, biophysics, biochemistry, and cell biology — to reveal the mechanisms of basic biological processes, and we develop chemical probes that modulate them.
-
Naima G. Sharaf
Assistant Professor of Biology and, by courtesy, of Structural Biology
Current Research and Scholarly InterestsResearch in the lab bridges biology, microbiology, and immunology to translate lipoprotein research into therapeutics
-
Georgios Skiniotis
Professor of Molecular and Cellular Physiology and of Structural Biology
BioThe Skiniotis laboratory seeks to resolve structural and mechanistic questions underlying biological processes that are central to cellular physiology. Our investigations employ primarily cryo-electron microscopy (cryoEM) and 3D reconstruction techniques complemented by biochemistry, biophysics and simulation methods to obtain a dynamic view into the macromolecular complexes carrying out these processes. The main theme in the lab is the structural biology of cell surface receptors that mediate intracellular signaling and communication. Our current main focus is the exploration of the mechanisms responsible for transmembrane signal instigation in cytokine receptors and G protein coupled receptor (GPCR) complexes.