Stanford University


Showing 21-40 of 110 Results

  • Michael Genesereth

    Michael Genesereth

    Associate Professor of Computer Science

    BioGenesereth is most known for his work on Computational Logic and applications of that work in Enterprise Management, Computational Law, and General Game Playing. He is one of the founders of Teknowledge, CommerceNet, Mergent Systems, and Symbium. Genesereth is the director of the Logic Group at Stanford and the founder and research director of CodeX - the Stanford Center for Legal Informatics.

  • Michael Gensheimer

    Michael Gensheimer

    Clinical Associate Professor, Radiation Oncology - Radiation Therapy

    Current Research and Scholarly InterestsIn addition to my clinical research in head and neck and lung cancer, I work on the application of computer science and machine learning to cancer research. I develop tools for analyzing large datasets to improve outcomes and safety of cancer treatment. I developed a machine learning prognostic model using data from around 13,000 patients with metastatic cancer which performs better than traditional models and physicians [PubMed ID 33313792]. We recently completed a prospective randomized study in thousands of patients in which the model was used to help improve advance care planning conversations.

    I also work on the methods underpinning observational and predictive modeling research. My open source nnet-survival software that allows use of neural networks for survival modeling has been used by researchers internationally. In collaboration with the Stanford Research Informatics Center, I examined how electronic medical record (EMR) survival outcome data compares to gold-standard data from a cancer registry [PubMed ID 35802836]. The EMR data captured less than 50% of deaths, a finding that affects many studies being published that use EMR outcomes data.

  • Paul George, MD, PhD

    Paul George, MD, PhD

    Associate Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsCONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
    We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.

    BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
    The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.

    APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
    The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes.

  • Margot Gerritsen

    Margot Gerritsen

    Professor of Energy Resources Engineering, Emerita

    Current Research and Scholarly InterestsResearch
    My work is about understanding and simulating complicated fluid flow problems. My research focuses on the design of highly accurate and efficient parallel computational methods to predict the performance of enhanced oil recovery methods. I'm particularly interested in gas injection and in-situ combustion processes. These recovery methods are extremely challenging to simulate because of the very strong nonlinearities in the governing equations. Outside petroleum engineering, I'm active in coastal ocean simulation with colleagues from the Department of Civil and Environmental Engineering, yacht research and pterosaur flight mechanics with colleagues from the Department of Mechanical and Aeronautical Engineering, and the design of search algorithms in collaboration with the Library of Congress and colleagues from the Institute of Computational and Mathematical Engineering.

    Teaching
    I teach courses in both energy related topics (reservoir simulation, energy, and the environment) in my department, and mathematics for engineers through the Institute of Computational and Mathematical Engineering (ICME). I also initiated two courses in professional development in our department (presentation skills and teaching assistant training), and a consulting course for graduate students in ICME, which offers expertise in computational methods to the Stanford community and selected industries.

    Professional Activities
    Senior Associate Dean, School of Earth, Energy and Environmental Sciences, Stanford (from 2015); Director, Institute for Computational and Mathematical Engineering, Stanford (from 2010); Stanford Fellow (2010-2012); Magne Espedal Professor II, Bergen University (2011-2014); Aldo Leopold Fellow (2009); Chair, SIAM Activity group in Geosciences (2007, present, reelected in 2009); Faculty Research Fellow, Clayman Institute (2008); Elected to Council of Society of Industrial and Applied Mathematics (SIAM) (2007); organizing committee, 2008 Gordon Conference on Flow in Porous Media; producer, Smart Energy podcast channel; Director, Stanford Yacht Research; Co-director and founder, Stanford Center of Excellence for Computational Algorithms in Digital Stewardship; Editor, Journal of Small Craft Technology; Associate editor, Transport in Porous Media; Reviewer for various journals and organizations including SPE, DoE, NSF, Journal of Computational Physics, Journal of Scientific Computing, Transport in Porous Media, Computational Geosciences; member, SIAM, SPE, KIVI, AGU, and APS

  • Olivier Gevaert

    Olivier Gevaert

    Associate Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science

    Current Research and Scholarly InterestsMy lab focuses on biomedical data fusion: the development of machine learning methods for biomedical decision support using multi-scale biomedical data. We primarily use methods based on regularized linear regression to accomplish this. We primarily focus on applications in oncology and neuroscience.

  • Shambhu Ghimire

    Shambhu Ghimire

    Lead Scientist, SLAC National Accelerator Laboratory

    Current Role at StanfordPrincipal Investigator in a DOE-funded research area: High-order Harmonic Generation (HHG)

  • Sadegh Ghorbani

    Sadegh Ghorbani

    Visiting Post Doc, Geballe Laboratory for Advanced Materials
    Affiliate, Program-Heilshorn, S.

    BioA biotechnologist with a focus on protein-based hydrogels, aimed at exploring the intricate processes of neurogenesis, brain tumors, and the signaling pathways governing their cell-cell and cell-matrix adhesion. Through the utilization of customizable hydrogels that incorporate cell-adhesive sequences, our primary objective is to mimic the native microenvironment of the nervous system within 3D systems, allowing us to discern the intricate responses of cells on engineered and functional bio-interfaces. My work is driven by dual-core objectives. Firstly, I am committed to enhancing the treatment of peripheral nerve injuries by devising a therapeutic approach that is both efficient and effective. Secondly, I am involved in investigating the complex interactions between brain cancer cells and neuronal cells in precisely defined microenvironments.

    #Biomaterials #Biointerface #Tissue_engineering #Neuroscience #Brain_tumors #Biotechnology #Cellular_biology

  • Amato J. Giaccia

    Amato J. Giaccia

    Jack, Lulu and Sam Willson Professor, Professor of Radiation Oncology, Emeritus

    Current Research and Scholarly InterestsDuring the last five years, we have identified several small molecules that kill VHL deficient renal cancer cells through a synthetic lethal screening approach. Another major interest of my laboratory is in identifying hypoxia-induced genes involved in invasion and metastases. We are also investigating how hypoxia regulates gene expression epigenetically.

  • William Giardino

    William Giardino

    Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsThe Giardino Laboratory: our group aims to decipher the neural mechanisms underlying psychiatric conditions of stress, addiction, and sleep disturbances. Our work uses combinatorial technologies for precisely mapping, monitoring, and manipulating neural circuits that drive hedonic and homeostatic states. Projects in the lab are funded by the National Institutes of Health (NIAAA), the Whitehall Foundation, and the Brain Research Foundation.

  • Erin Gibson

    Erin Gibson

    Assistant Professor of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsGlia make up more than half of the cells in the human brain, but we are just beginning to understand the complex and multifactorial role glia play in health and disease. Glia are decidedly dynamic in form and function. Understanding the mechanisms underlying this dynamic nature of glia is imperative to developing novel therapeutic strategies for diseases of the nervous system that involve aberrant gliogenesis, especially related to changes in myelination.

  • Rona Giffard

    Rona Giffard

    Professor of Anesthesiology, Perioperative and Pain Medicine, Emerita

    Current Research and Scholarly InterestsAstrocytes, microglia and neurons interact, and have unique vulnerabilities to injury based on their patterns of gene expression and their functional roles. We focus on the cellular and molecular basis of brain cell injury in stroke. We study the effects of altering miRNA expression, altering levels of heat shock and cell death regulatory proteins. Our goal is to improve outcome by improving mitochondrial function and brain cell survival, and reducing oxidative stress and inflammation.

  • William Gilly

    William Gilly

    Professor of Oceans

    Current Research and Scholarly InterestsMy work has contributed to understanding electrical excitability in nerve & muscle in organisms ranging from brittle-stars to mammals. Current research addresses behavior, physiology and ecology of squid through field and lab approaches. Electronic tagging plus in situ video, acoustic and oceanographic methods are used to study behaviors and life history in the field. Lab work focuses on control of chromogenic behavior by the chromatophore network and of locomotion by the giant axon system.

  • Lisa Giocomo

    Lisa Giocomo

    Professor of Neurobiology

    Current Research and Scholarly InterestsMy laboratory studies the cellular and molecular mechanisms underlying the organization of cortical circuits important for spatial navigation and memory. We are particularly focused on medial entorhinal cortex, where many neurons fire in spatially specific patterns and thus offer a measurable output for molecular manipulations. We combine electrophysiology, genetic approaches and behavioral paradigms to unravel the mechanisms and behavioral relevance of non-sensory cortical organization. Our first line of research is focused on determining the cellular and molecular components crucial to the neural representation of external space by functionally defined cell types in entorhinal cortex (grid, border and head direction cells). We plan to use specific targeting of ion channels, combined with in vivo tetrode recordings, to determine how channel dynamics influence the neural representation of space in the behaving animal. A second, parallel line of research, utilizes a combination of in vivo and in vitro methods to further parse out ionic expression patterns in entorhinal cortices and determine how gradients in ion channels develop. Ultimately, our work aims to understand the ontogenesis and relevance of medial entorhinal cortical topography in spatial memory and navigation.

  • Nicholas Giori MD, PhD

    Nicholas Giori MD, PhD

    Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsOsteoarthritis
    Medical Device Development