Stanford University


Showing 61-80 of 134 Results

  • Rod Hentz

    Rod Hentz

    Professor of Surgery, Emeritus

    Current Research and Scholarly Interests1. Nerve regeneration and repair, evaluation of repair methods, modalities to enhance peripheral nerve regeneration, development of improved methods to analyze nerve regeneration.

    2. Implementation of functional neuromuscular stimulation to paralytic deformities.

    3. Computer modeling of upper limb function.

  • Tina Hernandez-Boussard

    Tina Hernandez-Boussard

    Professor of Medicine (Biomedical Informatics), of Biomedical Data Science, of Surgery and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly InterestsMy background and expertise is in the field of computational biology, with concentration in health services research. A key focus of my research is to apply novel methods and tools to large clinical datasets for hypothesis generation, comparative effectiveness research, and the evaluation of quality healthcare delivery. My research involves managing and manipulating big data, which range from administrative claims data to electronic health records, and applying novel biostatistical techniques to innovatively assess clinical and policy related research questions at the population level. This research enables us to create formal, statistically rigid, evaluations of healthcare data using unique combinations of large datasets.

  • Rogelio A. Hernández-López

    Rogelio A. Hernández-López

    Assistant Professor of Bioengineering and of Genetics

    Current Research and Scholarly InterestsOur group works at the interface of mechanistic, synthetic, and systems biology to understand and program cellular recognition, communication, and organization. We are currently interested in engineering biomedical relevant cellular behaviors for cancer immunotherapy.

  • Sven Herrmann

    Sven Herrmann

    Physical Science Research Scientist, KIPAC

    Current Research and Scholarly InterestsReadout architectures and electronics for imaging detectors

  • Daniel Herschlag

    Daniel Herschlag

    Professor of Biochemistry and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsOur research is aimed at understanding the chemical and physical behavior underlying biological macromolecules and systems, as these behaviors define the capabilities and limitations of biology. Toward this end we study folding and catalysis by RNA, as well as catalysis by protein enzymes.

  • Shea Hess Webber

    Shea Hess Webber

    Physical Science Research Scientist

    Bio***EDUCATION:***
    Dr. Hess Webber received a BS in Physics from Gettysburg College in 2009. She subsequently joined the Computational Data Sciences PhD program (formerly, Computational Science and Informatics) at George Mason University, with a specialty in Astrophysics and Space Sciences. Her PhD thesis work was entitled "Solar f-mode Wave Scattering Off Linear Source Boundaries" and she successfully completed her PhD in late 2016 (also earning an MS along the way -- 2012).

    ***EXPERIENCE:***
    Dr. Hess Webber began her career in solar physics research in 2005, as a summer intern in the Solar Physics Division at NASA's Goddard Space Flight Center. She continued collaborating with scientists at Goddard through undergrad, mainly working in solar coronal hole studies using SOHO/EIT data but also collaborating briefly on solar flare studies with the RHESSI team. She began working at GSFC full-time as a graduate research assistant in 2009. Her initial GRA work continued the ongoing coronal hole detection research, extending the data set with SDO/AIA images and improving the detection technique. The core of Dr. Hess Webber's dissertation considered coronal holes using helioseismology, investigating how surface waves on the Sun are influenced when passing through a coronal hole and whether wave perturbations can be used to isolate coronal hole boundaries. In doing so, she developed a new geometry-dependent helioseismic technique and showed that the geometry of a "scattering feature" is non-negligible in helioseismology studies. After defending her PhD, Dr. Hess Webber continued as a contracted postdoctoral researcher at GSFC for a year, collaborating on CME-tracking methods. In early 2018, she began as a postdoctoral scholar at Stanford University in the W. W. Hansen Experimental Physics Lab's solar physics group. Currently, Dr. Hess Webber is continuing as research staff with the HEPL solar physics team, where her main research projects include helioseismic studies, and machine-learning applied to solar magnetism to enable improved coronal/solar-wind models for space-weather forecasting.

    ***LEADERSHIP:***
    Dr. Hess Webber is currently an elected member of the AAS Solar Physics Division Committee. She is also a co-lead of the COFFIES Center Effectiveness Team.

    ***BROADER IMPACTS***
    Dr. Hess Webber also has extensive experience with Education and Public Outreach in solar physics, and some experience with science policy. She is currently on the KIPAC Equity & Inclusion Task Forces for 1) Mental Health and 2) Mentoring. She also actively participates in the COFFIES DEIA and Beans initiatives, as well as organizes the Stanford Solar Physics Summer Student program.

  • Lambertus Hesselink

    Lambertus Hesselink

    Professor of Electrical Engineering and, by courtesy of Applied Physics

    BioHesselink's research encompasses nano-photonics, ultra high density optical data storage, nonlinear optics, optical super-resolution, materials science, three-dimensional image processing and graphics, and Internet technologies.

  • Shaul Hestrin, PhD

    Shaul Hestrin, PhD

    Professor of Comparative Medicine

    Current Research and Scholarly InterestsThe main interest of my lab is to understand how the properties of neocortical neurons, the circuits they form and the inputs they receive give rise to neuronal activity and behavior. Our approach includes behavioral studies, two-photon calcium imaging, in vivo whole cell recording in behaving animals and optogenetic methods to activate or to silence the activity of cortical neurons.

  • Jennifer Hicks

    Jennifer Hicks

    Executive Director, Wu Tsai Human Performance Alliance

    Current Role at StanfordExecutive Director, Wu Tsai Human Performance Alliance at Stanford
    Director of Research, Mobilize Center
    Director of Research, Restore Center
    Director Research and Development, OpenSim Project

  • Brian Hie

    Brian Hie

    Assistant Professor of Chemical Engineering

    BioI am an Assistant Professor of Chemical Engineering and Data Science at Stanford University, and an Innovation Investigator at Arc Institute. I supervise the Laboratory of Evolutionary Design, where we conduct research at the intersection of biology and machine learning.

    I was previously a Stanford Science Fellow in the Stanford University School of Medicine and a Visiting Researcher at Meta AI. I completed my Ph.D. at MIT CSAIL and was an undergraduate at Stanford University. I have also previously worked at Google X, Illumina, and Salesforce.

  • William Hiesinger, MD

    William Hiesinger, MD

    Associate Professor of Cardiothoracic Surgery (Adult Cardiac Surgery)

    BioDr. Hiesinger is a board-certified, fellowship-trained specialist in adult cardiac surgery. He is also an associate professor in the Department of Cardiothoracic Surgery at Stanford University School of Medicine.

    Dr. Hiesinger’s clinical focus encompasses the full spectrum of cardiothoracic conditions and treatment approaches, such as heart transplantation, mitral and aortic valve repair, surgical treatment for hypertrophic cardiomyopathy, coronary artery bypass, and complex thoracic aortic procedures. He serves as Surgical Director of the Stanford Mechanical Circulatory Support Program, where he leads and directs the surgical implantation of ventricular assist devices (VADs) in patients with end-stage heart failure.

    The National Institutes of Health and the Thoracic Surgery Foundation have awarded funds to support Dr. Hiesinger’s research. In the Stanford Cardiothoracic Therapeutics and Surgery Laboratory, Dr. Hiesinger's research spans the disciplines of computer science and cardiovascular biology, and he endeavors to build novel foundational deep learning systems designed to better represent and process high-dimensional inputs and apply these systems towards clinical problems. Additionally, his lab investigates bioengineered devices, tissue engineering, and angiogenic cytokine therapy for the treatment of heart failure.

    He has published extensively and his work has appeared in Nature Communications, Nature Machine Intelligence, the Journal of Heart and Lung Transplantation, Circulation Heart Failure, the Journal of Thoracic and Cardiovascular Surgery, Journal of Vascular Surgery, and elsewhere.

    He teaches courses on cardiothoracic surgery skills. He also advises surgeons of the future.

    Dr. Hiesinger has won awards for his research and scholarship, including the Surgical Resident of the Year Award, Jonathan E. Rhoads Research Award, Clyde F. Baker Research Prize, and I.S. Ravdin Prize, all from his alma mater, the University of Pennsylvania. He was a finalist for the Vivien Thomas Young Investigator Award from the American Heart Association.

    Dr. Hiesinger is a member of the American Association For Thoracic Surgery and serves on the Cardiac Surgery Biology Club. He is also a member of the Society of Thoracic Surgeons and serves on the Workforce on Surgical Treatment of End-Stage Cardiopulmonary Disease national committee as well as the American Heart Association Council for Cardiothoracic and Vascular Surgery.

  • John Higgins

    John Higgins

    Professor of Pathology

    Current Research and Scholarly InterestsI work as a diagnostic surgical pathologist doing translational research in renal neoplasia and medical renal disease and neoplastic and medical liver disease. Subspecialty areas of clinical interest include diagnostic immunohistochemistry, renal, hepatic and transplant pathology.

  • Lynn Hildemann

    Lynn Hildemann

    Senior Associate Dean for Education and Professor of Civil and Environmental Engineering

    BioLynn Hildemann's current research areas include the sources and dispersion of airborne particulate matter indoors, and assessment of human exposure to air pollutants.

    Prof. Hildemann received BS, MS, and PhD degrees in environmental engineering science from the California Institute of Technology. She is an author on >100 peer-reviewed publications, including two with over 1000 citations each, and another 6 with over 500 citations each. She has been honored with Young Investigator Awards from NSF and ONR, the Kenneth T. Whitby Award from the AAAR (1998), and Stanford's Gores Award for Teaching Excellence (2013); she also was a co-recipient of Atmospheric Environment’s Haagen-Smit Outstanding Paper Award (2001).

    She has served on advisory committees for the Bay Area Air Quality Management District and for the California Air Resources Board. She has been an Associate Editor for Environmental Science & Technology, and Aerosol Science and Technology, and has served on the advisory board for the journal Environmental Science & Technology.

    At Stanford, Prof. Hildemann has been chair of the Department of Civil & Environmental Engineering, and served as an elected member of the Faculty Senate. She has chaired the School of Engineering Library Committee, the University Committee on Judicial Affairs, and the University Breadth Governance Board.

  • Pamela Hinds

    Pamela Hinds

    Rodney H. Adams Professor in the School of Engineering, Fortinet Founders Chair of the Department of Management Science and Engineering and Professor of Management Science and Engineering

    BioPamela J. Hinds is Fortinet Founders Chair and Professor of Management Science & Engineering, Co-Director of the Center on Work, Technology, and Organization and on the Director's Council for the Hasso Plattner Institute of Design. She studies the effect of technology on teams, collaboration, and innovation. Pamela has conducted extensive research on the dynamics of cross-boundary work teams, particularly those spanning national borders. She explores issues of culture, language, identity, conflict, and the role of site visits in promoting knowledge sharing and collaboration. She has published extensively on the relationship between national culture and work practices, particularly exploring how work practices or technologies created in one location are understood and employed at distant sites. Pamela also has a body of research on human-robot interaction in the work environment and the dynamics of human-robot teams. Most recently, Pamela has been looking at the changing nature of work in the face of emerging technologies, including the nature of coordination in open innovation, changes in work and organizing resulting from 3D-printing, and the work of data analysts. Her research has appeared in journals such as Organization Science, Research in Organizational Behavior, Academy of Management Journal, Academy of Management Annals, Academy of Management Discoveries, Human-Computer Interaction, Journal of Applied Psychology, Journal of Experimental Psychology: Applied, and Organizational Behavior and Human Decision Processes. Pamela is a Senior Editor of Organization Science. She is also co-editor with Sara Kiesler of the book Distributed Work (MIT Press). Pamela holds a Ph.D. in Organizational Science and Management from Carnegie Mellon University.