Stanford University
Showing 41-50 of 61 Results
-
Samuel So, MD
Lui Hac Minh Professor in the School of Medicine
Current Research and Scholarly InterestsThrough a 4 pronged comprehensive program: translational and clinical research, early detection and treatment, promoting education, awareness and immunization and building partnership, we are working towards the development of new strategies that will lead to the elimination of hepatitis B worldwide and reduce the threat and incidence of liver cancer. Current research efforts focus on evaluating potential new diagnostic and treatment markers and novel targeted therapy for primary liver cancer.
-
Hyongsok Tom Soh
Professor of Radiology (Diagnostic Sciences Laboratory), of Electrical Engineering, of Bioengineering and, by courtesy, of Chemical Engineering
BioDr. Soh received his B.S. with a double major in Mechanical Engineering and Materials Science with Distinction from Cornell University and his Ph.D. in Electrical Engineering from Stanford University. From 1999 to 2003, Dr. Soh served as the technical manager of MEMS Device Research Group at Bell Laboratories and Agere Systems. He was a faculty member at UCSB before joining Stanford in 2015. His current research interests are in analytical biotechnology, especially in high-throughput screening, directed evolution, and integrated biosensors.
-
Olav Solgaard
Director, Edward L. Ginzton Laboratory and Robert L. and Audrey S. Hancock Professor in the School of Engineering
On Leave from 10/01/2024 To 06/30/2025BioThe Solgaard group focus on design and fabrication of nano-photonics and micro-optical systems. We combine photonic crystals, optical meta-materials, silicon photonics, and MEMS, to create efficient and reliable systems for communication, sensing, imaging, and optical manipulation.
-
David Solow-Cordero
Associate Director, High-Throughput Screening, Innovative Medicines Accelerator (IMA)
Current Role at StanfordAssociate Director, High-Throughput Screening Knowledge Center, , Sarafan ChEM-H and Innovative Medicine Accelerator (IMA)
This high-throughput screening (HTS) laboratory allows Stanford researchers and others to discover novel modulators of targets that otherwise would not be practical in industry. The center incorporates instrumentation (purchased with NCRR NIH Instrumentation grant numbers S10RR019513, S10RR026338, S10OD025004, and S10OD026899), databases, compound libraries, and personnel whose previous sole domains were in industry.
Among our instrumentation are a fully automated Molecular Devices ImageXpress Micro Confocal High-Content fluorescence microplate imager, with live cell, fluidics and phase contrast options, an Echo 655 Acoustic Dispense, a Thermo integrated HTS robotic system, a Caliper Life Sciences SciClone ALH3000 and an Agilent Bravo microplate liquid handler, and the BMG Clariostarplus, Tecan Infinite M1000 and M1000 PRO and Molecular Devices FlexStation II 384 fluorescence, luminescence and absorbance multimode microplate readers.
We have over 180,000 small molecules for compound screens, 15,000 cDNAs for genomic screens, and whole genome siRNA libraries targeting the human genome (the siARRAY whole human genome siRNA library from Dharmacon, targeting 21,000 human genes) and the mouse genome (Qiagen mouse whole genome siRNA set V1 against 22,124 genes).
The HTSKC main screening lab is located in ChEM-H W008, the cell-based assay development lab is located in CCSR Room 0133-North Wing, between the Transgenic Mouse Facility, and the Stanford Genomics Facility. -
Scott G. Soltys, MD
Professor of Radiation Oncology (Radiation Therapy) and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsMy clinical and research interests focus on the development of new radiation techniques involving stereotactic radiosurgery and radiotherapy for the treatment of malignant and benign tumors of the brain and spine, as well as functional disorders such as trigeminal neuralgia.
-
Hong Song, MD, PhD
Assistant Professor of Radiology (Nuclear Medicine)
BioHong Song received his MD from Tulane University School of Medicine and a Ph.D. in Chemical Engineering from Tulane University. He performed research in targeted radionuclide therapy as a postdoctoral fellow at the Johns Hopkins University. Following medical school, he joined Dual pathway Nuclear Medicine and Diagnostic Radiology residency at Stanford. His current research interests include PSMA PET in biochemically recurrent prostate cancer and DOTATATE PET in PRRT for neuroendocrine tumors.
-
Geoffrey Sonn
Associate Professor of Urology and, by courtesy, of Radiology (Body MRI)
Current Research and Scholarly InterestsMy interest is in improving prostate cancer diagnosis through MRI and image-targeted prostate biopsy. In collaboration with radiologists at Stanford, we are working to define the optimal role of MRI in prostate cancer. We hope to improve cancer imaging to the point that some men with elevated PSA may safely avoid prostate biopsy. For those who need biopsy, we are evaluating novel MRI-US fusion targeted biopsy, a technique that greatly improves upon the conventional biopsy method.
-
David Spiegel
Jack, Lulu and Sam Willson Professor of Medicine
Current Research and Scholarly InterestsDr. Spiegel's research program involves mind/body interactions, including cancer progression, the response to traumatic stress, and the effect of hypnosis on the perception of pain and anxiety.
-
Daniel Spielman
Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsMy research interests are in the field of medical imaging, particularly magnetic resonance imaging and in vivo spectroscopy. Current projects include MRI and MRS at high magnetic fields and metabolic imaging using hyperpolarized 13C-labeled MRS.
-
James Spudich
Douglass M. and Nola Leishman Professor of Cardiovascular Disease, Emeritus
Current Research and Scholarly InterestsThe general research interest of this laboratory is the molecular basis of cell motility, with a current emphasis on power output by the human heart. We have three specific research interests, the molecular basis of energy transduction that leads to ATP-driven myosin movement on actin, the biochemical basis of the regulation of actin and myosin interaction and their assembly states, and the roles these proteins play in vivo, in cell movement, changes in cell shape and muscle contraction.