Stanford University
Showing 81-90 of 197 Results
-
Mykel Kochenderfer
Associate Professor of Aeronautics and Astronautics and, by courtesy, of Computer Science
BioMykel Kochenderfer is Associate Professor of Aeronautics and Astronautics at Stanford University. Prior to joining the faculty, he was at MIT Lincoln Laboratory where he worked on airspace modeling and aircraft collision avoidance, with his early work leading to the establishment of the ACAS X program. He received a Ph.D. from the University of Edinburgh and B.S. and M.S. degrees in computer science from Stanford University. Prof. Kochenderfer is the director of the Stanford Intelligent Systems Laboratory (SISL), conducting research on advanced algorithms and analytical methods for the design of robust decision making systems. Of particular interest are systems for air traffic control, unmanned aircraft, and other aerospace applications where decisions must be made in uncertain, dynamic environments while maintaining safety and efficiency. Research at SISL focuses on efficient computational methods for deriving optimal decision strategies from high-dimensional, probabilistic problem representations. He is an author of "Decision Making under Uncertainty: Theory and Application" (2015), "Algorithms for Optimization" (2019), and "Algorithms for Decision Making" (2022), all from MIT Press. He is a third generation pilot.
-
Ilan Kroo
Thomas V. Jones Professor in the School of Engineering
BioProfessor Kroo's research involves work in three general areas: multidisciplinary optimization and aircraft synthesis, unconventional aircraft, and low-speed aerodynamics. Current research in the field of aircraft synthesis, sponsored by NASA and industry, includes the development of a new computational architecture for aircraft design, and its integration with numerical optimization. Studies of unconventional configurations employ rapid turnaround analysis methods in the design of efficient subsonic and supersonic commercial aircraft. Recent research has included investigation of configurations such as joined wings, oblique wings, and tailless aircraft. Nonlinear low-speed aerodynamics studies have focused on vortex wake roll-up, refined computation of induced drag, the design of wing tips, and the aerodynamics of maneuvering aircraft.