Stanford University
Showing 141-150 of 167 Results
-
Olav Solgaard
Audrey S. Hancock Professor in the School of Engineering
BioThe Solgaard group focus on design and fabrication of nano-photonics and micro-optical systems. We combine photonic crystals, optical meta-materials, silicon photonics, and MEMS, to create efficient and reliable systems for communication, sensing, imaging, and optical manipulation.
-
Andrew Spakowitz
Senior Associate Dean for Research and Faculty Affairs, Professor of Chemical Engineering, of Materials Science and Engineering and, by courtesy, of Applied Physics
Current Research and Scholarly InterestsTheory and computation of biological processes and complex materials
-
Alfred M. Spormann
Professor of Civil and Environmental Engineering and of Chemical Engineering, Emeritus
Current Research and Scholarly InterestsMetabolism of anaerobic microbes in diseases, bioenergy, and bioremediation
-
Jonathan Stebbins
Professor of Geological Sciences, Emeritus
Current Research and Scholarly Interestsstructure and dynamics of crystalline, glassy, and molten inorganic materials and how these relate to geologically and technologically important properties and processes; solid state Nuclear Magnetic Resoance (NMR); mineralogy; igneous petrology; glass science
-
James Sweeney
Professor of Management Science & Engineering, Emeritus
Current Research and Scholarly InterestsDeterminants of energy efficiency opportunities, barriers, and policy options. Emphasis on behavioral issues, including personal, corporate, or organizational. Behavior may be motivated by economic incentives, social, or cultural factors, or more generally, by a combination of these factors. Systems analysis questions of energy use.
-
Katie Taflan
Assistant Director, Explore Energy, Precourt Institute for Energy
Current Role at StanfordAssistant Director for Explore Energy, Precourt Institute for Energy
-
William Abraham Tarpeh
Assistant Professor of Chemical Engineering, by courtesy, of Civil and Environmental Engineering and Center Fellow at the Precourt Institute for Energy and, by courtesy, at the Woods Institute for the Environment
BioReimagining liquid waste streams as resources can lead to recovery of valuable products and more efficient, less costly approaches to reducing harmful discharges to the environment. Pollutants in effluent streams can be captured and used as valuable inputs to other processes. For example, municipal wastewater contains resources like energy, water, nutrients, and metals. The Tarpeh Lab develops and evaluates novel approaches to resource recovery from “waste” waters at several synergistic scales: molecular mechanisms of chemical transport and transformation; novel unit processes that increase resource efficiency; and systems-level assessments that identify optimization opportunities. We employ understanding of electrochemistry, separations, thermodynamics, kinetics, and reactor design to preferentially recover resources from waste. We leverage these molecular-scale insights to increase the sustainability of engineered processes in terms of energy, environmental impact, and cost.