Wu Tsai Human Performance Alliance


Showing 1-10 of 27 Results

  • Stephen A. Baccus

    Stephen A. Baccus

    Professor of Neurobiology

    Current Research and Scholarly InterestsWe study how the neural circuitry of the vertebrate retina encodes visual information and performs computations. To control and measure the retinal circuit, we present visual images while performing simultaneous two-photon imaging and multielectrode recording. We perturb the circuit as it operates using simultaneous intracellular current injection and multielectrode recording, and use the resulting large data sets to construct models of retinal computation.

  • Fred M Baik, MD

    Fred M Baik, MD

    Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    BioDr. Baik is Assistant Professor of Otolaryngology – Head & Neck Surgery at Stanford University. He provides comprehensive surgical care for patients with head and neck cancer, both as an ablative and reconstructive surgeon. His clinical interests include oral cavity cancer, complex skin cancer, microvascular reconstruction and the diagnosis and management of nodal metastasis. With his background in fluorescence imaging, Dr. Baik’s research focuses on surgical navigation using targeted agents to improve tumor margin assessment and the detection of nodal metastasis, and he currently leads several clinical trials to translate novel imaging techniques.

    Dr. Baik graduated with honors in Biology at the University of Pennsylvania and received his medical degree at UC San Diego. After completing his Otolaryngology residency at the University of Washington, he pursued advanced training in Head and Neck Oncology & Reconstructive Surgery at Mount Sinai Beth Israel Hospital in New York City. He is a board-certified by the American Board of Otolaryngology, and a member of the American Head and Neck Society, American Academy of Otolaryngology – Head and Neck Surgery, and a fellow of the American College of Surgeons.

  • Jeremy Bailenson

    Jeremy Bailenson

    Thomas More Storke Professor, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Education

    BioJeremy Bailenson is founding director of Stanford University’s Virtual Human Interaction Lab, Thomas More Storke Professor in the Department of Communication, Professor (by courtesy) of Education, Professor (by courtesy) Program in Symbolic Systems, and a Senior Fellow at the Woods Institute for the Environment. He has served as Director of Graduate Studies in the Department of Communication for over a decade. He earned a B.A. from the University of Michigan in 1994 and a Ph.D. in cognitive psychology from Northwestern University in 1999. He spent four years at the University of California, Santa Barbara as a Post-Doctoral Fellow and then an Assistant Research Professor.

    Bailenson studies the psychology of Virtual and Augmented Reality, in particular how virtual experiences lead to changes in perceptions of self and others. His lab builds and studies systems that allow people to meet in virtual space, and explores the changes in the nature of social interaction. His most recent research focuses on how virtual experiences can transform education, environmental conservation, empathy, and health. He is the recipient of the Dean’s Award for Distinguished Teaching at Stanford. In 2020, IEEE recognized his work with “The Virtual/Augmented Reality Technical Achievement Award”.

    He has published more than 200 academic papers, spanning the fields of communication, computer science, education, environmental science, law, linguistics, marketing, medicine, political science, and psychology. His work has been continuously funded by the National Science Foundation for over 25 years.

    His first book Infinite Reality, co-authored with Jim Blascovich, emerged as an Amazon Best-seller eight years after its initial publication, and was quoted by the U.S. Supreme Court. His new book, Experience on Demand, was reviewed by The New York Times, The Wall Street Journal, The Washington Post, Nature, and The Times of London, and was an Amazon Best-seller.

    He has written opinion pieces for The Washington Post, The Wall Street Journal, Harvard Business Review, CNN, PBS NewsHour, Wired, National Geographic, Slate, The San Francisco Chronicle, TechCrunch, and The Chronicle of Higher Education, and has produced or directed six Virtual Reality documentary experiences which were official selections at the Tribeca Film Festival. His lab has exhibited VR in hundreds of venues ranging from The Smithsonian to The Superbowl.

  • Michael Baiocchi

    Michael Baiocchi

    Associate Professor of Epidemiology and Population Health and, by courtesy, of Statistics and of Medicine (Stanford Prevention Research Center)
    On Partial Leave from 01/01/2026 To 12/01/2026

    BioProfessor Baiocchi is a PhD statistician in Stanford University's Epidemiology and Population Health Department. He thinks a lot about behavioral interventions and how to rigorously evaluate if and how they work. Methodologically, his work focuses on creating statistically rigorous methods for causal inference that are transparent and easy to critique. He designed -- and was the principle investigator for -- two large randomized studies of interventions to prevent sexual assault in the settlements of Nairobi, Kenya.

    Professor Baiocchi is an interventional statistician (i.e., grounded in both the creation and evaluation of interventions). The unifying idea in his research is that he brings rigorous, quantitative approaches to bear upon messy, real-world questions to better people's lives.

  • Stephanie Balters

    Stephanie Balters

    Instructor, Psychiatry and Behavioral Sciences - Interdisciplinary Brain Sciences

    BioDr. Stephanie Balters is a neuroscientist, educator, and innovator dedicated to advancing team flourishing and excellence. She directs the Empowerment Neuroscience Lab in Stanford Medicine’s Department of Psychiatry & Behavioral Sciences, serves as Director of Research at Stanford’s Center for Compassion and Altruism Research and Education (CCARE), and is Scientific Lead of the Stanford Belonging Project. Her research employs portable dual-brain neuroimaging (fNIRS hyperscanning) and advanced computational modeling to elucidate the neural and inter-brain signatures of high-impact, purpose-aligned teams. She also develops and tests targeted, evidence-based interventions that measurably strengthen connection, collaboration, and performance. Partnering across Stanford Medicine, the Graduate School of Business, and Stanford Athletics, Dr. Balters translates biomarkers of human connection into simple, repeatable practices that leaders can train and track over time—turning the neuroscience of connection into a practical engine for culture change. She also leads team-innovation workshops at Stanford, creating high-trust spaces that foster authenticity, alignment, and bold, measurable execution. Beyond academia, she serves as a Human Factors Specialist at NATO, converting neuroscience insights into actionable strategies for resilient, high-performing teams.

  • Steven Banik

    Steven Banik

    Assistant Professor of Chemistry

    BioSteven Banik’s research interests center on rewiring mammalian biology and chemical biotechnology development using molecular design and construction. Projects in the Banik lab combine chemical biology, organic chemistry, protein engineering, cell and molecular biology to precisely manipulate the biological machines present in mammalian cells. Projects broadly aim to perform new functions that shed light on regulatory machinery and the potential scope of mammalian biology. A particular focus is the study of biological mechanisms that can be coopted by synthetic molecules (both small molecules and proteins). These concepts are applied to develop new therapeutic strategies for treating aging-related disorders, genetic diseases, and cancer.

    Prior to joining the faculty at Stanford, Steven was a NIH and Burroughs CASI postdoctoral fellow advised by Prof. Carolyn Bertozzi at Stanford. His postdoctoral research developed approaches for targeted protein degradation from the extracellular space with lysosome targeting chimeras (LYTACs). He received his Ph.D. from Harvard University in 2016, where he worked with Prof. Eric Jacobsen on synthetic methods for the selective, catalytic difluorination of organic molecules and new approaches for generating and controlling reactive cationic intermediates in asymmetric catalysis.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering, of Chemistry, and of Bioengineering

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry, Bioengineering and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022 and in 2025. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 800 refereed publications and more than 80 US patents with a Google Scholar H-index 237.

    Bao is a member of the US National Academy of Sciences, National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.

    Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She co-founded C3 Nano Co. (acquired by Du Pont) and PyrAmes, which have produced products used in commercial smartphones and hospitals, respectively. Multiple inventions from her lab have been licensed and served as foundational technologies for several additional start-ups.

    Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008.

    In Stanford, Bao has pioneered molecular design concepts and fabrication processes to advance the scope and applications of skin-inspired electronics. Her group discovered nano confinement effect of conjugated polymers in polymer blends, which established the fundamental foundation for skin-inspired electronic materials and devices. Her work has resulted in new materials and device solutions for soft robotics, wearable and implantable electronics for precision health, precision mental health and advanced tools for understanding neuroscience and treatment of neurodegenerative diseases. Building on chemical insights, her group has developed foundational materials and devices that enabled a new generation of skin-inspired soft electronics. They provide unprecedented opportunities for understanding human health through developing monitoring, diagnosis and treatment tools. Some examples include: a neuromorphic e-skin that can sense force and temperature and directly communicate with brain, a wireless wound healing patch, a soft NeuroString for simultaneous neurochemical monitoring in the brain and gut, soft high-density electrophysiological recording array, a meta-learned skin sensor for detailed body movements, a reconfigurable self-healing electronic skin.

  • Annelise E. Barron

    Annelise E. Barron

    Associate Professor of Bioengineering

    Current Research and Scholarly InterestsBiophysical mechanisms of host defense peptides (a.k.a. antimicrobial peptides) and their peptoid mimics; also, molecular and cellular biophysics of human innate immune responses.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology

    BioCarolyn Bertozzi is the Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology at Stanford University, and an Investigator of the Howard Hughes Medical Institute. She completed her undergraduate degree in Chemistry from Harvard University in 1988 and her Ph.D. in Chemistry from UC Berkeley in 1993. After completing postdoctoral work at UCSF in the field of cellular immunology, she joined the UC Berkeley faculty in 1996. In June 2015, she joined the faculty at Stanford University and became the co-director and Institute Scholar at Sarafan ChEM-H.

    Prof. Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface glycosylation pertinent to disease states. Her lab focuses on profiling changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and exploiting this information for development of diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Prof. Bertozzi has been recognized with many honors and awards for both her research and teaching accomplishments. She is an elected member of the National Academy of Sciences, the American Academy of Arts and Sciences, and the German Academy of Sciences Leopoldina. Some awards of note include the Nobel Prize in Chemistry, Lemelson-MIT award for inventors, Whistler Award, Ernst Schering Prize, MacArthur Foundation Fellowship, the ACS Award in Pure Chemistry, Tetrahedron Young Investigator Award, and Irving Sigal Young Investigator Award of the Protein Society. Her efforts in undergraduate education have earned her the UC Berkeley Distinguished Teaching Award and the Donald Sterling Noyce Prize for Excellence in Undergraduate Teaching.