Eric A. Appel is an Assistant Professor of Materials Science & Engineering at Stanford University. He received his BS in Chemistry and MS in Polymer Science from Cal Poly, San Luis Obispo. Eric performed his MS thesis research with Robert D. Miller and James L. Hedrick at the IBM Almaden Research Center in San Jose, CA. He then obtained his PhD in Chemistry working in the lab of Dr. Oren A. Scherman in the Melville Laboratory for Polymer Synthesis at the University of Cambridge. His PhD research focused on the preparation of dynamic and stimuli-responsive supramolecular polymeric materials. For his PhD work, Eric was the recipient of the Jon Weaver PhD prize from the Royal Society of Chemistry and a Graduate Student Award from the Materials Research Society. Upon graduating from Cambridge in 2012, he was awarded a National Research Service Award from the NIH (NIBIB) and pursued a Wellcome Trust Postdoctoral Fellowship at MIT working with Robert S. Langer on the development of supramolecular biomaterials for drug delivery and tissue engineering. During his post-doctoral work, he received a Margaret A. Cunningham Immune Mechanisms in Cancer Research Award. He recently received a Terman Faculty Fellowship from the School of Engineering at Stanford University.

Academic Appointments

Professional Education

  • Postdoc, MIT, Bioengineering
  • Ph.D., University of Cambridge, Chemistry (2012)
  • M.S., Cal Poly, SLO, Polymer Science (2008)
  • B.S., Cal Poly, SLO, Chemistry (2008)

Current Research and Scholarly Interests

The underlying theme of the Appel Lab at Stanford University integrates concepts and approaches from supramolecular chemistry, natural/synthetic materials, and biology. We aim to develop supramolecular biomaterials that exploit a diverse design toolbox and take advantage of the beautiful synergism between physical properties, aesthetics, and low energy consumption typical of natural systems. Our vision is to use these materials to solve fundamental biological questions and to engineer advanced healthcare solutions.

2017-18 Courses

Stanford Advisees

All Publications

  • Supramolecular PEGylation of biopharmaceuticals PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Webber, M. J., Appel, E. A., Vinciguerra, B., Cortinas, A. B., Thapa, L. S., Jhunjhunwala, S., Isaacs, L., Langer, R., Anderson, D. G. 2016; 113 (50): 14189-14194


    The covalent modification of therapeutic biomolecules has been broadly explored, leading to a number of clinically approved modified protein drugs. These modifications are typically intended to address challenges arising in biopharmaceutical practice by promoting improved stability and shelf life of therapeutic proteins in formulation, or modifying pharmacokinetics in the body. Toward these objectives, covalent modification with poly(ethylene glycol) (PEG) has been a common direction. Here, a platform approach to biopharmaceutical modification is described that relies on noncovalent, supramolecular host-guest interactions to endow proteins with prosthetic functionality. Specifically, a series of cucurbit[7]uril (CB[7])-PEG conjugates are shown to substantially increase the stability of three distinct protein drugs in formulation. Leveraging the known and high-affinity interaction between CB[7] and an N-terminal aromatic residue on one specific protein drug, insulin, further results in altering of its pharmacological properties in vivo by extending activity in a manner dependent on molecular weight of the attached PEG chain. Supramolecular modification of therapeutic proteins affords a noncovalent route to modify its properties, improving protein stability and activity as a formulation excipient. Furthermore, this offers a modular approach to append functionality to biopharmaceuticals by noncovalent modification with other molecules or polymers, for applications in formulation or therapy.

    View details for DOI 10.1073/pnas.1616639113

    View details for Web of Science ID 000389696700033

    View details for PubMedID 27911829

  • Supramolecular biomaterials NATURE MATERIALS Webber, M. J., Appel, E. A., Meijer, E. W., Langer, R. 2016; 15 (1): 13-26

    View details for DOI 10.1038/NMAT4474

    View details for Web of Science ID 000366690600014

  • Supramolecular biomaterials. Nature materials Webber, M. J., Appel, E. A., Meijer, E. W., Langer, R. 2015; 15 (1): 13-26


    Polymers, ceramics and metals have historically dominated the application of materials in medicine. Yet rationally designed materials that exploit specific, directional, tunable and reversible non-covalent interactions offer unprecedented advantages: they enable modular and generalizable platforms with tunable mechanical, chemical and biological properties. Indeed, the reversible nature of supramolecular interactions gives rise to biomaterials that can sense and respond to physiological cues, or that mimic the structural and functional aspects of biological signalling. In this Review, we discuss the properties of several supramolecular biomaterials, as well as their applications in drug delivery, tissue engineering, regenerative medicine and immunology. We envision that supramolecular biomaterials will contribute to the development of new therapies that combine highly functional materials with unmatched patient- and application-specific tailoring of both material and biological properties.

    View details for DOI 10.1038/nmat4474

    View details for PubMedID 26681596

  • Hierarchical Supermolecular Structures for Sustained Drug Release SMALL Tan, J. P., Kim, S. H., Nederberg, F., Appel, E. A., Waymouth, R. M., Zhang, Y., Hedrick, J. L., Yang, Y. Y. 2009; 5 (13): 1504-1507

    View details for DOI 10.1002/smll.200801756

    View details for Web of Science ID 000267903200003

    View details for PubMedID 19326354

  • Simple Approach to Stabilized Micelles Employing Miktoarm Terpolymers and Stereocomplexes with Application in Paclitaxel Delivery BIOMACROMOLECULES Nederberg, F., Appel, E., Tan, J. P., Kim, S. H., Fukushima, K., Sly, J., Miller, R. D., Waymouth, R. M., Yang, Y. Y., Hedrick, J. L. 2009; 10 (6): 1460-1468


    A simple and versatile approach to miktoarm co- and terpolymers from carbonate functional oligomers is described. The key building block employed is a carboxylic acid functional cyclic carbonate, derived from 2,2-bis(methylol)propionic acid, that was readily coupled to a hydroxyl functional monomethylether poly(ethylene glycol) oligomer. Ring-opening of the cyclic carbonate using functional amines generates a carbamate linkage bearing a functional group capable of initiating either controlled radical or ring-opening polymerization, together with a primary hydroxyl group for ring-opening polymerization. Two tandem polymerization steps were possible which add the second two arms, thus generating the targeted ABC miktoarm terpolymer. The resulting amphiphilic miktoarm terpolymers containing poly(D- and L-lactide) formed polylactide stereocomplexes in the bulk. In aqueous solution, the stereocomplex mixture of Y-shaped miktoarm copolymers, poly(ethylene glycol)-poly(D-lactide)-poly(D-lactide) and poly(ethylene glycol)-poly(L-lactide)-poly(L-lactide), or the stereoblock miktoarm poly(ethylene glycol)-poly(D-lactide)-poly(L-lactide) form stabilized micelles with a significantly lower critical micelle concentration than those derived from conventional stereo regular linear or Y-shaped amphiphiles. This simple and versatile approach provides a useful synthetic route to complex macromolecular architectures that can assemble into stable micelles. These micelles provide high capacity for loading of the anticancer drug paclitaxel and possess narrow size distribution as well as unique structure, leading to sustained and near zero-ordered release of drug without significant initial burst.

    View details for DOI 10.1021/bm900056g

    View details for Web of Science ID 000266860700018

    View details for PubMedID 19385659