Bio


Dr. Hassan Jahanandish is a Postdoctoral Fellow at Stanford School of Medicine, where his research focuses on the intersection of multimodal AI and medical imaging with the overarching objective of advancing care paradigms for cancer patients. Before joining Stanford, he completed his PhD in Bioengineering at the University of Texas at Dallas and the University of Texas Southwestern Medical Center (2022). Beyond his research pursuits, Hassan is an Instructor and Team Mentor at Stanford Center for Biodesign, where he helps shape the future of medical innovation and healthcare entrepreneurship. Hassan's scholarly contributions have been published in numerous journals and conferences, including Lancet Oncology, NeurIPS, and ICRA, and his work in collaboration with Nokia Bell Labs has been awarded a United States patent. Hassan's achievements have been recognized by awards such as the Jonsson Family Graduate Fellowship in Bioengineering, the Doctoral Dissertation Research Award, and being an International RehabWeek paper award finalist (2019).

Stanford Advisors


All Publications


  • ProstAtlasDiff: Prostate cancer detection on MRI using Diffusion Probabilistic Models guided by population spatial cancer atlases. Medical image analysis Li, C. X., Bhattacharya, I., Vesal, S., Ghanouni, P., Jahanandish, H., Fan, R. E., Sonn, G. A., Rusu, M. 2025; 101: 103486

    Abstract

    Magnetic Resonance Imaging (MRI) is increasingly being used to detect prostate cancer, yet its interpretation can be challenging due to subtle differences between benign and cancerous tissue. Recently, Denoising Diffusion Probabilistic Models (DDPMs) have shown great utility for medical image segmentation, modeling the process as noise removal in standard Gaussian distributions. In this study, we further enhance DDPMs by introducing the knowledge that the occurrence of cancer varies across the prostate (e.g., ∼70% of prostate cancers occur in the peripheral zone). We quantify such heterogeneity with a registration pipeline to calculate voxel-level cancer distribution mean and variances. Our proposed approach, ProstAtlasDiff, relies on DDPMs that use the cancer atlas to model noise removal and segment cancer on MRI. We trained and evaluated the performance of ProstAtlasDiff in detecting clinically significant cancer in a multi-institution multi-scanner dataset, and compared it with alternative models. In a lesion-level evaluation, ProstAtlasDiff achieved statistically significantly higher accuracy (0.91 vs. 0.85, p<0.001), specificity (0.91 vs. 0.84, p<0.001), positive predictive value (PPV, 0.50 vs. 0.35, p<0.001), compared to alternative models. ProstAtlasDiff also offers more accurate cancer outlines, achieving a higher Dice Coefficient (0.33 vs. 0.31, p<0.01). Furthermore, we evaluated ProstAtlasDiff in an independent cohort of 91 patients who underwent radical prostatectomy to compare its performance to that of radiologists, relative to whole-mount histopathology ground truth. ProstAtlasDiff detected 16% (15 lesions out of 93) more clinically significant cancers compared to radiologists (sensitivity: 0.90 vs. 0.75, p<0.01), and was comparable in terms of ROC-AUC, PR-AUC, PPV, accuracy, and Dice coefficient (p≥0.05). Furthermore, we evaluated ProstAtlasDiff in a second independent cohort of 537 subjects and observed that ProsAtlasDiff outperformed alternative approaches. These results suggest that ProstAltasDiff has the potential to assist in localizing cancer for biopsy guidance and treatment planning.

    View details for DOI 10.1016/j.media.2025.103486

    View details for PubMedID 39970527

  • ProCUSNet: Prostate Cancer Detection on B-mode Transrectal Ultrasound Using Artificial Intelligence for Targeting During Prostate Biopsies. European urology oncology Rusu, M., Jahanandish, H., Vesal, S., Li, C. X., Bhattacharya, I., Venkataraman, R., Zhou, S. R., Kornberg, Z., Sommer, E. R., Khandwala, Y. S., Hockman, L., Zhou, Z., Choi, M. H., Ghanouni, P., Fan, R. E., Sonn, G. A. 2025

    Abstract

    To assess whether conventional brightness-mode (B-mode) transrectal ultrasound images of the prostate reveal clinically significant cancers with the help of artificial intelligence methods.This study included 2986 men who underwent biopsies at two institutions. We trained the PROstate Cancer detection on B-mode transrectal UltraSound images NETwork (ProCUSNet) to determine whether ultrasound can reliably detect cancer. Specifically, ProCUSNet is based on the well-established nnUNet frameworks, and seeks to detect and outline clinically significant cancer on three-dimensional (3D) examinations reconstructed from 2D screen captures. We compared ProCUSNet against (1) reference labels (n = 515 patients), (2) eight readers that interpreted B-mode ultrasound (n = 20-80 patients), and (3) radiologists interpreting magnetic resonance imaging (MRI) for clinical care (n = 110 radical prostatectomy patients).ProCUSNet found 82% clinically significant cancer cases with a lesion boundary error of up to 2.67 mm and detected 42% more lesions than ultrasound readers (sensitivity: 0.86 vs 0.44, p < 0.05, Wilcoxon test, Bonferroni correction). Furthermore, ProCUSNet has similar performance to radiologists interpreting MRI when accounting for registration errors (sensitivity: 0.79 vs 0.78, p > 0.05, Wilcoxon test, Bonferroni correction), while having the same targeting utility as a supplement to systematic biopsies.ProCUSNet can localize clinically significant cancer on screen capture B-mode ultrasound, a task that is particularly challenging for clinicians reading these examinations. As a supplement to systematic biopsies, ProCUSNet appears comparable with MRI, suggesting its utility for targeting suspicious lesions during the biopsy and possibly for screening using ultrasound alone, in the absence of MRI.

    View details for DOI 10.1016/j.euo.2024.12.012

    View details for PubMedID 39880746

  • Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): an international, paired, non-inferiority, confirmatory study. The Lancet. Oncology Saha, A., Bosma, J. S., Twilt, J. J., van Ginneken, B., Bjartell, A., Padhani, A. R., Bonekamp, D., Villeirs, G., Salomon, G., Giannarini, G., Kalpathy-Cramer, J., Barentsz, J., Maier-Hein, K. H., Rusu, M., Rouvière, O., van den Bergh, R., Panebianco, V., Kasivisvanathan, V., Obuchowski, N. A., Yakar, D., Elschot, M., Veltman, J., Fütterer, J. J., de Rooij, M., Huisman, H. 2024

    Abstract

    Artificial intelligence (AI) systems can potentially aid the diagnostic pathway of prostate cancer by alleviating the increasing workload, preventing overdiagnosis, and reducing the dependence on experienced radiologists. We aimed to investigate the performance of AI systems at detecting clinically significant prostate cancer on MRI in comparison with radiologists using the Prostate Imaging-Reporting and Data System version 2.1 (PI-RADS 2.1) and the standard of care in multidisciplinary routine practice at scale.In this international, paired, non-inferiority, confirmatory study, we trained and externally validated an AI system (developed within an international consortium) for detecting Gleason grade group 2 or greater cancers using a retrospective cohort of 10 207 MRI examinations from 9129 patients. Of these examinations, 9207 cases from three centres (11 sites) based in the Netherlands were used for training and tuning, and 1000 cases from four centres (12 sites) based in the Netherlands and Norway were used for testing. In parallel, we facilitated a multireader, multicase observer study with 62 radiologists (45 centres in 20 countries; median 7 [IQR 5-10] years of experience in reading prostate MRI) using PI-RADS (2.1) on 400 paired MRI examinations from the testing cohort. Primary endpoints were the sensitivity, specificity, and the area under the receiver operating characteristic curve (AUROC) of the AI system in comparison with that of all readers using PI-RADS (2.1) and in comparison with that of the historical radiology readings made during multidisciplinary routine practice (ie, the standard of care with the aid of patient history and peer consultation). Histopathology and at least 3 years (median 5 [IQR 4-6] years) of follow-up were used to establish the reference standard. The statistical analysis plan was prespecified with a primary hypothesis of non-inferiority (considering a margin of 0·05) and a secondary hypothesis of superiority towards the AI system, if non-inferiority was confirmed. This study was registered at ClinicalTrials.gov, NCT05489341.Of the 10 207 examinations included from Jan 1, 2012, through Dec 31, 2021, 2440 cases had histologically confirmed Gleason grade group 2 or greater prostate cancer. In the subset of 400 testing cases in which the AI system was compared with the radiologists participating in the reader study, the AI system showed a statistically superior and non-inferior AUROC of 0·91 (95% CI 0·87-0·94; p<0·0001), in comparison to the pool of 62 radiologists with an AUROC of 0·86 (0·83-0·89), with a lower boundary of the two-sided 95% Wald CI for the difference in AUROC of 0·02. At the mean PI-RADS 3 or greater operating point of all readers, the AI system detected 6·8% more cases with Gleason grade group 2 or greater cancers at the same specificity (57·7%, 95% CI 51·6-63·3), or 50·4% fewer false-positive results and 20·0% fewer cases with Gleason grade group 1 cancers at the same sensitivity (89·4%, 95% CI 85·3-92·9). In all 1000 testing cases where the AI system was compared with the radiology readings made during multidisciplinary practice, non-inferiority was not confirmed, as the AI system showed lower specificity (68·9% [95% CI 65·3-72·4] vs 69·0% [65·5-72·5]) at the same sensitivity (96·1%, 94·0-98·2) as the PI-RADS 3 or greater operating point. The lower boundary of the two-sided 95% Wald CI for the difference in specificity (-0·04) was greater than the non-inferiority margin (-0·05) and a p value below the significance threshold was reached (p<0·001).An AI system was superior to radiologists using PI-RADS (2.1), on average, at detecting clinically significant prostate cancer and comparable to the standard of care. Such a system shows the potential to be a supportive tool within a primary diagnostic setting, with several associated benefits for patients and radiologists. Prospective validation is needed to test clinical applicability of this system.Health~Holland and EU Horizon 2020.

    View details for DOI 10.1016/S1470-2045(24)00220-1

    View details for PubMedID 38876123

  • AI VS. UROLOGISTS: A COMPARATIVE ANALYSIS FOR PROSTATE CANCER DETECTION ON TRANSRECTAL B-MODE ULTRASOUND Vesal, S., Bhattacharya, I., Jahanandish, H., Choi, M., Zhou, S., Kornberg, Z., Sommer, E., Fan, R. E., Rusu, M., Sonn, G. A. LIPPINCOTT WILLIAMS & WILKINS. 2024: E1056
  • ARTIFICIAL INTELLIGENCE-ASSISTED PROSTATE CANCER DETECTION ON B-MODE TRANSRECTAL ULTRASOUND IMAGES Bhattacharya, I., Vesal, S., Jahanandish, H., Choi, M., Zhou, S., Kornberg, Z., Sommer, E., Fan, R. E., Brooks, J. D., Rusu, M., Sonn, G. A. LIPPINCOTT WILLIAMS & WILKINS. 2024: E511
  • SwinTransformer-Based Affine Registration of MRI and Ultrasound Images of the Prostate Sang, S., Jahanandish, H., Li, X., Vesal, S., Bhattacharya, I., Zhang, L., Fan, R. E., Sonn, G., Rusu, M., Boehm, B., Bottenus, N. SPIE-INT SOC OPTICAL ENGINEERING. 2024

    View details for DOI 10.1117/12.3008797

    View details for Web of Science ID 001223524400006

  • A deep learning framework to assess the feasibility of localizing prostate cancer on b-mode transrectal ultrasound images Jahanandish, H., Vesal, S., Bhattacharya, I., Li, C., Fan, R. E., Sonn, G. A., Rusu, M., Boehm, B., Bottenus, N. SPIE-INT SOC OPTICAL ENGINEERING. 2024

    View details for DOI 10.1117/12.3008819

    View details for Web of Science ID 001223524400023

  • MIC-CUSP: Multimodal Image Correlations for Ultrasound-Based Prostate Cancer Detection Bhattacharya, I., Vesal, S., Jahanandish, H., Choi, M., Zhou, S., Kornberg, Z., Sommer, E., Fan, R., Brooks, J., Sonn, G., Rusu, M., Kainz, B., Noble, A., Schnabel, J., Khanal, B., Muller, J. P., Day, T. SPRINGER INTERNATIONAL PUBLISHING AG. 2023: 121-131