Academic Appointments


Professional Education


  • Postdoctoral Fellow, Stanford University, Biology
  • Ph.D., Massachusetts Institute of Technology, Biological Engineering (2016)
  • B.S., University of California at Berkeley, Bioengineering (2010)

Stanford Advisees


All Publications


  • Toward synthetic plant development. Plant physiology Brophy, J. A. 1800

    Abstract

    The ability to engineer plant form will enable the production of novel agricultural products designed to tolerate extreme stresses, boost yield, reduce waste, and improve manufacturing practices. While historically, plants were altered through breeding to change their size or shape, advances in our understanding of plant development and our ability to genetically engineer complex eukaryotes are leading to the direct engineering of plant structure. In this review, I highlight the central role of auxin in plant development and the synthetic biology approaches that could be used to turn auxin-response regulators into powerful tools for modifying plant form. I hypothesize that recoded, gain-of-function auxin response proteins combined with synthetic regulation could be used to override endogenous auxin signaling and control plant structure. I also argue that auxin-response regulators are key to engineering development in non-model plants and that single cell-omics techniques will be essential for characterizing and modifying auxin response in these plants. Collectively, advances in synthetic biology, single cell -omics, and our understanding of the molecular mechanisms underpinning development have set the stage for a new era in the engineering of plant structure.

    View details for DOI 10.1093/plphys/kiab568

    View details for PubMedID 34904660

  • Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells. Nature communications Cuevas-Velazquez, C. L., Vellosillo, T., Guadalupe, K., Schmidt, H. B., Yu, F., Moses, D., Brophy, J. A., Cosio-Acosta, D., Das, A., Wang, L., Jones, A. M., Covarrubias, A. A., Sukenik, S., Dinneny, J. R. 2021; 12 (1): 5438

    Abstract

    Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.

    View details for DOI 10.1038/s41467-021-25736-8

    View details for PubMedID 34521831

  • Vision, challenges and opportunities for a Plant Cell Atlas. eLife Plant Cell Atlas Consortium, Jha, S. G., Borowsky, A. T., Cole, B. J., Fahlgren, N., Farmer, A., Huang, S. C., Karia, P., Libault, M., Provart, N. J., Rice, S. L., Saura-Sanchez, M., Agarwal, P., Ahkami, A. H., Anderton, C. R., Briggs, S. P., Brophy, J. A., Denolf, P., Di Costanzo, L. F., Exposito-Alonso, M., Giacomello, S., Gomez-Cano, F., Kaufmann, K., Ko, D. K., Kumar, S., Malkovskiy, A. V., Nakayama, N., Obata, T., Otegui, M. S., Palfalvi, G., Quezada-Rodriguez, E. H., Singh, R., Uhrig, R. G., Waese, J., Van Wijk, K., Wright, R. C., Ehrhardt, D. W., Birnbaum, K. D., Rhee, S. Y., Ahmed, J., Alaba, O., Ameen, G., Arora, V., Arteaga-Vazquez, M. A., Arun, A., Bailey-Serres, J., Bartley, L. E., Bassel, G. W., Bergmann, D. C., Bertolini, E., Bhati, K. K., Blanco-Tourinan, N., Briggs, S. P., Brumos, J., Buer, B., Burlaocot, A., Cervantes-Perez, S. A., Chen, S., Contreras-Moreira, B., Corpas, F. J., Cruz-Ramirez, A., Cuevas-Velazquez, C. L., Cuperus, J. T., David, L. I., de Folter, S., Denolf, P. H., Ding, P., Dwyer, W. P., Evans, M. M., George, N., Handakumbura, P. P., Harrison, M. J., Haswell, E. S., Herath, V., Jiao, Y., Jinkerson, R. E., John, U., Joshi, S., Joshi, A., Joubert, L., Katam, R., Kaur, H., Kazachkova, Y., Raju, S. K., Khan, M. A., Khangura, R., Kumar, A., Kumar, A., Kumar, P., Kumar, P., Lavania, D., Lew, T. T., Lewsey, M. G., Lin, C., Liu, D., Liu, L., Liu, T., Lokdarshi, A., My Luong, A., Macaulay, I. C., Mahmud, S., Mahonen, A. P., Malukani, K. K., Marand, A. P., Martin, C. A., McWhite, C. D., Mehta, D., Martin, M. M., Mortimer, J. C., Nikolov, L. A., Nobori, T., Nolan, T. M., Ogden, A. J., Otegui, M. S., Ott, M., Palma, J. M., Paul, P., Rehman, A. U., Romera-Branchat, M., Romero, L. C., Roth, R., Sah, S. K., Shahan, R., Solanki, S., Song, B., Sozzani, R., Stacey, G., Stepanova, A. N., Taylor, N. L., Tello-Ruiz, M. K., Tran, T. M., Tripathi, R. K., Vadde, B. V., Varga, T., Vidovic, M., Walley, J. W., Wang, Z., Weizbauer, R. A., Whelan, J., Wijeratne, A. J., Xiang, T., Xu, S., Yadegari, R., Yu, H., Yuan, H. Y., Zanini, F., Zhao, F., Zhu, J., Zhuang, X. 2021; 10

    Abstract

    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.

    View details for DOI 10.7554/eLife.66877

    View details for PubMedID 34491200

  • Understanding and engineering plant form SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY Brophy, J. N., LaRue, T., Dinneny, J. R. 2018; 79: 68–77