Mohamadali Malakoutian
Postdoctoral Scholar, Electrical Engineering
Bio
Mohamadali is an experienced Postdoctoral researcher at Stanford University with a demonstrated history of working in high-power high-frequency transistors, all-diamond diodes, and diamond integration for thermal management, III-V wide bandgap semiconductors, integrated microsystems including MEMS/NEMS devices, and microfluidic channels. He is an expert in fab process design-integration, process and device modeling (Athena, Atlas), thin-film deposition techniques (Evaporation, Sputtering, PVD, ALD, and PECVD), dry etching (ICP/RIE etching of Diamond, AlN, SiN, Al2O3, SiO2), wet etching (bulk Si micromachining), and single-crystalline/polycrystalline diamond growth. He is currently working on the growth, fabrication, and characteristics of GaN HEMTs with diamond integrated for thermal management to solve the self-heating problem of mm-wave devices.
Honors & Awards
-
TECHCON 2023 Best Presenter Award, Semiconductor Research Corp. (SRC) (September 2023)
-
TECHCON 2022 Best Presenter Award, Semiconductor Research Corp. (SRC) (September 2022)
Professional Education
-
Bachelor of Science, University Of Tehran (2009)
-
Master of Science, University Of Tehran (2012)
-
Doctor of Philosophy, University of California Davis (2020)
-
PhD, University of California, Electrical Engineering (2020)
All Publications
-
Development of 300-400 °C grown diamond for semiconductor devices thermal management
MRS ADVANCES
2023
View details for DOI 10.1557/s43580-023-00677-0
View details for Web of Science ID 001103119100001
-
SRC-led materials research: 40 years ago, and now
MRS ADVANCES
2023
View details for DOI 10.1557/s43580-023-00665-4
View details for Web of Science ID 001094447800002
-
Thermal Scaffolding for Ultra-Dense 3D Integrated Circuits
IEEE. 2023
View details for DOI 10.1109/DAC56929.2023.10247815
View details for Web of Science ID 001073487300131
-
Impact of Diamond Passivation on f(T) and f(max) of mm-wave N-Polar GaN HEMTs
IEEE TRANSACTIONS ON ELECTRON DEVICES
2022
View details for DOI 10.1109/TED.2022.3218612
View details for Web of Science ID 000886832400001
-
Low Thermal Budget Growth of Near-Isotropic Diamond Grains for Heat Spreading in Semiconductor Devices
ADVANCED FUNCTIONAL MATERIALS
2022
View details for DOI 10.1002/adfm.202208997
View details for Web of Science ID 000854896500001
-
Current Transient Spectroscopic Study of Vacancy Complexes in Diamond Schottky p-i-n Diode
IEEE TRANSACTIONS ON ELECTRON DEVICES
2022
View details for DOI 10.1109/TED.2022.3182931
View details for Web of Science ID 000826445500001
-
A study on sub-bandgap photoexcitation in nitrogen- and boron-doped diamond with interdigitated device structure
APPLIED PHYSICS LETTERS
2022; 120 (11)
View details for DOI 10.1063/5.0083710
View details for Web of Science ID 000827449100002
-
Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling.
ACS applied materials & interfaces
2021
Abstract
The implementation of 5G-and-beyond networks requires faster, high-performance, and power-efficient semiconductor devices, which are only possible with materials that can support higher frequencies. Gallium nitride (GaN) power amplifiers are essential for 5G-and-beyond technologies since they provide the desired combination of high frequency and high power. These applications along with terrestrial hub and backhaul communications at high power output can present severe heat removal challenges. The cooling of GaN devices with diamond as the heat spreader has gained significant momentum since device self-heating limits GaN's performance. However, one of the significant challenges in integrating polycrystalline diamond on GaN devices is maintaining the device performance while achieving a low diamond/GaN channel thermal boundary resistance. In this study, we achieved a record-low thermal boundary resistance of around 3.1 ± 0.7 m2 K/GW at the diamond/Si3N4/GaN interface, which is the closest to theoretical prediction to date. The diamond was integrated within 1 nm of the GaN channel layer without degrading the channel's electrical behavior. Furthermore, we successfully minimized the residual stress in the diamond layer, enabling more isotropic polycrystalline diamond growth on GaN with thicknesses >2 mum and a 1.9 mum lateral grain size. More isotropic grains can spread the heat in both vertical and lateral directions efficiently. Using transient thermoreflectance, the thermal conductivity of the grains was measured to be 638 ± 48 W/m K, which when combined with the record-low thermal boundary resistance makes it a leading-edge achievement.
View details for DOI 10.1021/acsami.1c13833
View details for PubMedID 34875169
-
Demonstration of Monolithic Polycrystalline Diamond-GaN Complementary FET Technology for High-Temperature Applications
ACS APPLIED ELECTRONIC MATERIALS
2021; 3 (10): 4418-4423
View details for DOI 10.1021/acsaelm.1c00571
View details for Web of Science ID 000711759300015
-
Diamond-Incorporated Flip-Chip Integration for Thermal Management of GaN and Ultra-Wide Bandgap RF Power Amplifiers
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY
2021; 11 (8): 1177-1186
View details for DOI 10.1109/TCPMT.2021.3091555
View details for Web of Science ID 000685887800009
-
Development of Polycrystalline Diamond Compatible with the Latest N-Polar GaN mm-Wave Technology
CRYSTAL GROWTH & DESIGN
2021; 21 (5): 2624-2632
View details for DOI 10.1021/acs.cgd.0c01319
View details for Web of Science ID 000648580100007
-
Polycrystalline diamond growth on beta-Ga2O3 for thermal management
APPLIED PHYSICS EXPRESS
2021; 14 (5)
View details for DOI 10.35848/1882-0786/abf4f1
View details for Web of Science ID 000641029300001
-
Diamond Integration on GaN for Channel Temperature Reduction
IEEE. 2021: 70-74
View details for DOI 10.1109/WiPDA49284.2021.9645133
View details for Web of Science ID 000787172500014
-
Analysis of mobility-limiting mechanisms of the two-dimensional hole gas on hydrogen-terminated diamond
PHYSICAL REVIEW B
2020; 102 (7)
View details for DOI 10.1103/PhysRevB.102.075303
View details for Web of Science ID 000557726800002
-
Schottky Barrier Height Analysis of Diamond SPIND Using High Temperature Operation up to 873 K
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY
2020; 8: 614–18
View details for DOI 10.1109/JEDS.2020.2999269
View details for Web of Science ID 000543957600003
-
Hydrogen-terminated diamond FET and GaN HEMT delivering CMOS inverter operation at high-temperature
IEEE. 2020
View details for Web of Science ID 000615719100010
-
A Study on the First-Derivative Output Properties of GaN Static Induction Transistor with Submicrometer Fin Width
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
2019
View details for DOI 10.1002/pssb.201900545
View details for Web of Science ID 000497179400001
-
A Study on the Growth Window of Polycrystalline Diamond on Si3N4-coated N-Polar GaN
CRYSTALS
2019; 9 (10)
View details for DOI 10.3390/cryst9100498
View details for Web of Science ID 000498263500013