
Mohamadali Malakoutian
Postdoctoral Scholar, Electrical Engineering
Bio
Mohamadali is an experienced Postdoctoral researcher at Stanford University with a demonstrated history of working in high-power high-frequency transistors, all-diamond diodes, and diamond integration for thermal management, III-V wide bandgap semiconductors, integrated microsystems including MEMS/NEMS devices, and microfluidic channels. He is an expert in fab process design-integration, process and device modeling (Athena, Atlas), thin-film deposition techniques (Evaporation, Sputtering, PVD, ALD, and PECVD), dry etching (ICP/RIE etching of Diamond, AlN, SiN, Al2O3, SiO2), wet etching (bulk Si micromachining), and single-crystalline/polycrystalline diamond growth. He is currently working on the growth, fabrication, and characteristics of GaN HEMTs with diamond integrated for thermal management to solve the self-heating problem of mm-wave devices.
All Publications
-
Development of Polycrystalline Diamond Compatible with the Latest N-Polar GaN mm-Wave Technology
CRYSTAL GROWTH & DESIGN
2021; 21 (5): 2624-2632
View details for DOI 10.1021/acs.cgd.0c01319
View details for Web of Science ID 000648580100007
-
Polycrystalline diamond growth on beta-Ga2O3 for thermal management
APPLIED PHYSICS EXPRESS
2021; 14 (5)
View details for DOI 10.35848/1882-0786/abf4f1
View details for Web of Science ID 000641029300001
-
Analysis of mobility-limiting mechanisms of the two-dimensional hole gas on hydrogen-terminated diamond
PHYSICAL REVIEW B
2020; 102 (7)
View details for DOI 10.1103/PhysRevB.102.075303
View details for Web of Science ID 000557726800002
-
Hydrogen-terminated diamond FET and GaN HEMT delivering CMOS inverter operation at high-temperature
IEEE. 2020
View details for Web of Science ID 000615719100010
-
Schottky Barrier Height Analysis of Diamond SPIND Using High Temperature Operation up to 873 K
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY
2020; 8: 614–18
View details for DOI 10.1109/JEDS.2020.2999269
View details for Web of Science ID 000543957600003
-
A Study on the First-Derivative Output Properties of GaN Static Induction Transistor with Submicrometer Fin Width
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
2019
View details for DOI 10.1002/pssb.201900545
View details for Web of Science ID 000497179400001
-
A Study on the Growth Window of Polycrystalline Diamond on Si3N4-coated N-Polar GaN
CRYSTALS
2019; 9 (10)
View details for DOI 10.3390/cryst9100498
View details for Web of Science ID 000498263500013