Bio


Dr. Noah Diffenbaugh is an Associate Professor and Senior Fellow at Stanford University. He studies the climate system, including the processes by which climate change could impact agriculture, water resources, and human health. Dr. Diffenbaugh is currently Editor-in-Chief of the peer-review journal Geophysical Research Letters. He has served as a Lead Author for Working Group II of the Intergovernmental Panel on Climate Change (IPCC), and has provided testimony and scientific expertise to the White House, the Governor of California, and U.S. Congressional offices. Dr. Diffenbaugh is a recipient of the James R. Holton Award from the American Geophysical Union, a CAREER award from the National Science Foundation, and a Terman Fellowship from Stanford University. He has also been recognized as a Kavli Fellow by the U.S. National Academy of Sciences, and as a Google Science Communication Fellow.

Academic Appointments


Administrative Appointments


  • Postgraduate Research Earth Scientist, University of California, Santa Cruz (2003 - 2004)
  • Assistant Professor of Earth and Atmospheric Sciences, Purdue University (2004 - 2008)
  • Associate Professor of Earth and Atmospheric Sciences, Purdue University (2008 - 2009)
  • Center Fellow, Woods Institute for the Environment Stanford University (2009 - 2013)
  • Assistant Professor of Environmental Earth System Science, Stanford University (2009 - 2013)
  • Senior Fellow, Woods Institute for the Environment Stanford University (2013 - Present)
  • Associate Professor of Environmental Earth System Science, Stanford University (2013 - Present)

Honors & Awards


  • Regents Fellowship, University of California (2000 - 2001)
  • Scholar, ARCS Foundation (2002 - 2003)
  • James R. Holton Award, Atmospheric Sciences Section, American Geophysical Union (2006)
  • Purdue President's Nominee - Packard Fellowship for Science and Engineering, Purdue University (2007)
  • “Best of 2008,” Diffenbaugh et al., Environmental Research Letters (ERL) (2008)
  • “Best of 2008,” Jackson et al, Environmental Research Letters (2008)
  • NSF Highlight of significant achievement toward strategic outcome goals, Trapp et al., 2007, Proceedings of the National Academy of Sciences (2008)
  • Fifth Anniversary Collection, Jackson et al., Environmental Research Letters, (2008)
  • “2009 Highlights,” Ahmed et al., Environmental Research Letters (ERL) (2009)
  • University Faculty Scholar, Purdue University (2009)
  • Terman Fellowship, Stanford University (2009 - 2012)
  • AGU Research Spotlight, Diffenbaugh and Ashfaq, GRL, American Geophysical Union (2010)
  • Kavli Fellow, U.S. National Academy of Sciences (2010)
  • Fifth Anniversary Collection, Diffenbaugh et al., Environmental Research Letters, (2011)
  • “2011 Highlights”, Diffenbaugh et al., Environmental Research Letters (2011)
  • Google Science Communication Fellow, Google (2011)
  • NSF CAREER Award, National Science Foundation (2010 - 2015)
  • Stanford Fellow, Stanford University (2013 - 2015)
  • ISI “Highly Cited Paper”, Diffenbaugh et al., Nature Climate Change, 2013, Thomson Reuters (2015)
  • ISI “Highly Cited Paper”, Singh et al., Nature Climate Change, 2014, Thomson Reuters (2015)
  • School of Earth Sciences Undergraduate Teaching Recognition, Stanford University (2014)

Boards, Advisory Committees, Professional Organizations


  • Editor-in-Chief, Geophysical Research Letters (2015 - Present)
  • Earth Sciences Council, School of Earth Sciences, Stanford University (2014 - Present)
  • Undergraduate Advisory Council, Vice Provost for Undergraduate Education, Stanford University (2014 - Present)
  • Undergraduate Teaching Recognition, School of Earth Sciences, Stanford University (2014 - 2014)
  • Faculty Advisory Board, Introductory Seminar Program, Stanford University (2013 - Present)
  • Faculty Committee, Sustainable Urban Systems initiative, Stanford University (2013 - Present)
  • Search Committee (co-Chair), Coastal Human-Environment Systems, Stanford University (2013 - Present)
  • Dean’s Teaching Task Force, School of Earth Sciences, Stanford University (2013 - 2014)
  • Director, Goldman Honors Program in Environmental Science, Technology and Policy, Stanford University (2012 - Present)
  • Faculty Mentor, Stanford Leland Scholars Program, Stanford University (2012 - Present)
  • Member, Science Advisory Board, Climate Change Science Institute, Oak Ridge National Laboratory (2012 - Present)
  • Academic Guidance Committee, Emmett Interdisciplinary Program in Environment and Resources (E-IPER), Stanford University (2012 - 2013)
  • Faculty Mentor, MUIR Woods Undergraduate Research Program, Stanford University (2012 - 2012)
  • Committee on the Effects of Provisions in the Internal Revenue Code on Greenhouse Gas Emissions, National Academy of Sciences (2011 - 2013)
  • Member, Sustainability 2.0 faculty committee, Stanford University (2011 - 2012)
  • Climate Science Day on Capitol Hill, February 16-17, 2011, American Geophysical Union (2011 - 2011)
  • Organizing Committee, Simulating the Spatial-Temporal Patterns of Anthropogenic Climate Change, Los Alamos Institute for Advanced Studies Workshop (2011 - 2011)
  • Co-Term Advisor, Earth Systems Program, Stanford University (2010 - Present)
  • Faculty Mentor, School of Earth Sciences High School Intern Program, Stanford University (2010 - Present)
  • Graduate Admissions Committee, Emmett Interdisciplinary Program in Environment and Resources (E-IPER), Stanford University (2010 - Present)
  • Pre-Major Advisor, Stanford University (2010 - Present)
  • Scientific Research Computing Facility Faculty Committee, Stanford University (2010 - Present)
  • Stanford University Member Representative, University Corporation for Atmospheric Research (2010 - Present)
  • Lead Author, Working Group II, Intergovernmental Panel on Climate Change (2010 - 2014)
  • Undergraduate Education Committee, School of Earth Sciences, Stanford University (2010 - 2013)
  • Environmental Forum Organizing Committee, Woods Institute for the Environment, Stanford University (2010 - 2011)
  • Co-Director, Fifth ICTP Workshop on the Theory and Use of Regional Climate Models, May, 2010, Trieste, Italy, International Centre for Theoretical Physics (2010 - 2010)
  • Organizing Committee, Climate Change Modeling and Scaling Workshop, U.S. National Climate Assessment (2010 - 2010)
  • Adjunct Associate Professor of Earth and Atmospheric Sciences, Purdue University (2009 - Present)
  • Affiliated Faculty, Emmett Interdisciplinary Program in Environment and Resources (E-IPER), Stanford University (2009 - Present)
  • Committee of the Whole, Earth Systems Program, Stanford University (2009 - Present)
  • Graduate Admissions Committee, Department of Environmental Earth System Science, Stanford University (2009 - Present)
  • Editor, Geophysical Research Letters (2009 - 2014)
  • Co-Chair, Paleoceanography and Paleoclimatology General Contributions, 2009 Joint Assembly, May 24-29, Toronto, Canada, American Geophysical Union (2009 - 2009)
  • DOE Climate Change Science: Focus Group, July 27-28, Washington, D.C., Department of Energy (2009 - 2009)
  • Executive Committee, Atmospheric Sciences Section, American Geophysical Union (2008 - Present)
  • Atmospheric Science Section Representative, Eos Advisory Board, American Geophysical Union (2008 - 2009)
  • Interim Director, Purdue Climate Change Research Center, Purdue University (2008 - 2009)
  • Co-Chair, Regional-Scale Forcing of Climate, AGU Fall Meeting, San Francisco, CA, December 15-19, American Geophysical Union (2008 - 2008)
  • Co-Chair, Transitioning Out of the Mid-Holocene Climate: An Evaluation of Land-Ocean Proxy Records and Model Simulations, AGU Fall Meeting, San Francisco, CA, December 15-19, American Geophysical Union (2008 - 2008)
  • Coordinating Lead Author, Climate Change in Indiana: Initial Analyses of Impacts and Opportunities, an analysis of S.2191, U.S. Senator Richard Lugar’s office (2008 - 2008)
  • Proposal Panelist – DOE (National Lab Climate Change Scientific Focus Areas; Regional Models for Climate Change Integrated Assessment); NASA (Modeling, Analysis, and Prediction); NOAA (Climate Prediction Program for the Americas); NSF (CDI-II); U.S. CLIVAR (Drought in Coupled Models Project), DOE, NASA, NOAA, NSF, U.S. CLIVAR (2007 - Present)
  • Member, Terrestrial Ecosystems and Climate Policy Working Group, National Center for Ecological Analysis and Synthesis (2007 - 2010)
  • Contributing Author, CCSP Synthesis and Assessment Product 3.4, Abrupt Climate Change, Hydrologic Variability and Change, Chapter 3, U.S. Geological Survey (2007 - 2008)
  • Book Chapter Referee – Climate Impact Hotspots: Key Vulnerable Regions and Climate Change, Publishing (2007 - 2007)
  • Report Referee, California Energy Commission, State of Washington (2007 - 2007)
  • Short Term Visitor, Abdus Salam International Centre for Theoretical Physics (2006 - Present)
  • Co-Guest Editor, Glacial-Interglacial Climate of the Past 160,000 Years: New Insights from Data and Models, Special Issue, Palaeogeography, Palaeoclimatology, Palaeoecology (2006 - 2006)
  • Contributor, Agency Technical Working Group, Potential Effects of Climate Change on New Mexico, State of New Mexico (2006 - 2006)
  • Journal Manuscript Referee, International Journal of Climatology, International Journal of Environmental Research and Public Health, Journal of Applied Meteorology and Climatology, Journal of Climate (2003 - Present)
  • Journal Manuscript Referee, Journal of Geophysical Research – Atmospheres, Journal of Hydrometeorology, Limnology and Oceanography, Meteorological Applications, Nature, Paleoceanography (2003 - Present)
  • Journal Manuscript Referee, Agricultural and Forest Meteorology, Atmospheric Research, Climate Dynamics, Climate Research, Climatic Change, Earth Interactions, Eos, Geology, Geophysical Research Letters, Global and Planetary Change (2003 - Present)
  • Journal Manuscript Referee, Proceedings of the National Academy of Sciences, Quaternary International, Quaternary Research, Quaternary Science Reviews, Theoretical and Applied Climatology, Water Resources Management (2003 - Present)
  • Co-Chair, Climate of the Last Glacial-Interglacial Cycle: New Insights From Models and Data, AGU Fall Meeting, San Francisco, CA, December 8-12, American Geophysical Union (2003 - 2003)

Professional Education


  • Ph.D., University of California, Santa Cruz, Earth Sciences (2003)
  • M.S., Stanford University, Earth Systems (1997)
  • B.S., Stanford University, Earth Systems (1997)

Current Research and Scholarly Interests


The Climate and Earth System Dynamics Group is led by Prof. Noah S. Diffenbaugh. Our research takes an integrated approach to understanding climate dynamics and climate impacts by probing the interface between physical processes and natural and human vulnerabilities. This interface spans a range of spatial and temporal scales, and a number of climate system processes. Much of the group's work has focused on the role of fine-scale processes in shaping climate change impacts, including studies of extreme weather, water resources, agriculture, human health, and poverty vulnerability.

We use the present vulnerabilities of natural and human systems to identify the climate phenomena that exert the most direct and acute influence on climate-sensitive systems. We then employ a suite of numerical modeling and data analysis techniques to understand why those physical phenomena occur in the current climate, by what mechanisms those physical phenomena are likely to respond to changes in climate “forcing”, and how those physical responses could impact humanity and other life. Employing this approach across a range of climate-sensitive systems has led to insights about (1) the importance of fine-scale climate processes in shaping the pattern and magnitude of climate change, (2) the importance of interactions between physical processes and human dimensions in shaping the impacts of climate change, and (3) the likelihood that high-impact climate change will occur locally and regionally at different levels of global warming.

Our ongoing research activities are directed at answering a suite of specific questions about the interaction of physical climate processes and climate-sensitive systems. These questions include:

- What are the climate phenomena that most impact natural and human systems?

- What physical processes control the frequency and severity of those phenomena at present?

- How do those physical processes respond to changes in forcing of the climate system (such as from changes in greenhouse gas concentrations or variations in Earth’s orbit)?

- How are natural and human systems likely to be impacted by changes in those physical processes?

2015-16 Courses


Stanford Advisees


All Publications


  • Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Science advances Swain, D. L., Horton, D. E., Singh, D., Diffenbaugh, N. S. 2016; 2 (4)

    Abstract

    Recent evidence suggests that changes in atmospheric circulation have altered the probability of extreme climate events in the Northern Hemisphere. We investigate northeastern Pacific atmospheric circulation patterns that have historically (1949-2015) been associated with cool-season (October-May) precipitation and temperature extremes in California. We identify changes in occurrence of atmospheric circulation patterns by measuring the similarity of the cool-season atmospheric configuration that occurred in each year of the 1949-2015 period with the configuration that occurred during each of the five driest, wettest, warmest, and coolest years. Our analysis detects statistically significant changes in the occurrence of atmospheric patterns associated with seasonal precipitation and temperature extremes. We also find a robust increase in the magnitude and subseasonal persistence of the cool-season West Coast ridge, resulting in an amplification of the background state. Changes in both seasonal mean and extreme event configurations appear to be caused by a combination of spatially nonuniform thermal expansion of the atmosphere and reinforcing trends in the pattern of sea level pressure. In particular, both thermal expansion and sea level pressure trends contribute to a notable increase in anomalous northeastern Pacific ridging patterns similar to that observed during the 2012-2015 California drought. Collectively, our empirical findings suggest that the frequency of atmospheric conditions like those during California's most severely dry and hot years has increased in recent decades, but not necessarily at the expense of patterns associated with extremely wet years.

    View details for DOI 10.1126/sciadv.1501344

    View details for PubMedID 27051876

  • Observed and projected climate trends and hotspots across the National Ecological Observatory Network regions FRONTIERS IN ECOLOGY AND THE ENVIRONMENT Anderegg, W. R., Diffenbaugh, N. S. 2015; 13 (10): 547-552

    View details for DOI 10.1890/150159

    View details for Web of Science ID 000365829600013

  • Debunking the climate hiatus CLIMATIC CHANGE Rajaratnam, B., Romano, J., Tsiang, M., Diffenbaugh, N. S. 2015; 133 (2): 129-140
  • Future property damage from flooding: sensitivities to economy and climate change CLIMATIC CHANGE Liu, J., Hertel, T. W., Diffenbaugh, N. S., Delgado, M. S., Ashfaq, M. 2015; 132 (4): 741-749
  • Rate and velocity of climate change caused by cumulative carbon emissions ENVIRONMENTAL RESEARCH LETTERS LoPresti, A., Charland, A., Woodard, D., Randerson, J., Diffenbaugh, N. S., Davis, S. J. 2015; 10 (9)
  • Evaluation of Nonhydrostatic Simulations of Northeast Pacific Atmospheric Rivers and Comparison to in Situ Observations MONTHLY WEATHER REVIEW Swain, D. L., Lebassi-Habtezion, B., Diffenbaugh, N. S. 2015; 143 (9): 3556-3569
  • Influence of temperature and precipitation variability on near-term snow trends CLIMATE DYNAMICS Mankin, J. S., Diffenbaugh, N. S. 2015; 45 (3-4): 1099-1116
  • A multi-model and multi-index evaluation of drought characteristics in the 21st century JOURNAL OF HYDROLOGY Touma, D., Ashfaq, M., Nayak, M. A., Kao, S., Diffenbaugh, N. S. 2015; 526: 196-207
  • Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., Diffenbaugh, N. S. 2015; 522 (7557): 465-469

    Abstract

    Surface weather conditions are closely governed by the large-scale circulation of the Earth's atmosphere. Recent increases in the occurrence of some extreme weather phenomena have led to multiple mechanistic hypotheses linking changes in atmospheric circulation to increasing probability of extreme events. However, observed evidence of long-term change in atmospheric circulation remains inconclusive. Here we identify statistically significant trends in the occurrence of atmospheric circulation patterns, which partially explain observed trends in surface temperature extremes over seven mid-latitude regions of the Northern Hemisphere. Using self-organizing map cluster analysis, we detect robust circulation pattern trends in a subset of these regions during both the satellite observation era (1979-2013) and the recent period of rapid Arctic sea-ice decline (1990-2013). Particularly substantial influences include the contribution of increasing trends in anticyclonic circulations to summer and autumn hot extremes over portions of Eurasia and North America, and the contribution of increasing trends in northerly flow to winter cold extremes over central Asia. Our results indicate that although a substantial portion of the observed change in extreme temperature occurrence has resulted from regional- and global-scale thermodynamic changes, the risk of extreme temperatures over some regions has also been altered by recent changes in the frequency, persistence and maximum duration of regional circulation patterns.

    View details for DOI 10.1038/nature14550

    View details for PubMedID 26108856

  • Anthropogenic warming has increased drought risk in California PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Diffenbaugh, N. S., Swain, D. L., Touma, D. 2015; 112 (13): 3931-3936

    Abstract

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

    View details for DOI 10.1073/pnas.1422385112

    View details for Web of Science ID 000351914500046

  • Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants ENERGY Kao, S., Sale, M. J., Ashfaq, M., Martinez, R. U., Kaiser, D. P., Wei, Y., Diffenbaugh, N. S. 2015; 80: 239-250
  • Joint bias correction of temperature and precipitation in climate model simulations JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Li, C., Sinha, E., Horton, D. E., Diffenbaugh, N. S., Michalak, A. M. 2014; 119 (23): 13153-13162
  • THE EXTRAORDINARY CALIFORNIA DROUGHT OF 2013/2014: CHARACTER, CONTEXT, AND THE ROLE OF CLIMATE CHANGE BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY Swain, D. L., Tsiang, M., Haugen, M., Singh, D., Charland, A., Rajaratnam, B., Diffenbaugh, N. S. 2014; 95 (9): S3-S7
  • SEVERE PRECIPITATION IN NORTHERN INDIA IN JUNE 2013: CAUSES, HISTORICAL CONTEXT, AND CHANGES IN PROBABILITY BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY Singh, D., Horton, D. E., Tsiang, M., Haugen, M., Ashfaq, M., Mei, R., Rastogi, D., Johnson, N. C., Charland, A., Rajaratnam, B., Diffenbaugh, N. S. 2014; 95 (9): S58-S61
  • Occurrence and persistence of future atmospheric stagnation events NATURE CLIMATE CHANGE Horton, D. E., Skinner, C. B., Singh, D., Diffenbaugh, N. S. 2014; 4 (8): 698-703
  • Uncertainties in the timing of unprecedented climates. Nature Hawkins, E., Anderson, B., Diffenbaugh, N., Mahlstein, I., Betts, R., Hegerl, G., Joshi, M., Knutti, R., McNeall, D., Solomon, S., Sutton, R., Syktus, J., Vecchi, G. 2014; 511 (7507): E3-5

    View details for DOI 10.1038/nature13523

    View details for PubMedID 24990757

  • Observed changes in extreme wet and dry spells during the South Asian summer monsoon season NATURE CLIMATE CHANGE Singh, D., Tsiang, M., Rajaratnam, B., Diffenbaugh, N. S. 2014; 4 (6): 456-461
  • Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility ENVIRONMENTAL RESEARCH LETTERS Verma, M., Hertel, T., Diffenbaugh, N. 2014; 9 (6)
  • Projected changes in African easterly wave intensity and track in response to greenhouse forcing PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Skinner, C. B., Diffenbaugh, N. S. 2014; 111 (19): 6882-6887

    Abstract

    Synoptic-scale African easterly waves (AEWs) impact weather throughout the greater Atlantic basin. Over the African continent, AEWs are instrumental in initiating and organizing precipitation in the drought-vulnerable Sahel region. AEWs also serve as the precursors to the most intense Atlantic hurricanes, and contribute to the global transport of Saharan dust. Given the relevance of AEWs for the climate of the greater Atlantic basin, we investigate the response of AEWs to increasing greenhouse gas concentrations. Using an ensemble of general circulation models, we find a robust increase in the strength of the winds associated with AEWs along the Intertropical Front in West Africa by the late 21st century of the representative concentration pathway 8.5. AEW energy increases directly due to an increase in baroclinicity associated with an enhanced meridional temperature gradient between the Sahara and Guinea Coast. Further, the pattern of low-level warming supports AEW development by enhancing monsoon flow, resulting in greater convergence and uplift along the Intertropical Front. These changes in energetics result in robust increases in the occurrence of conditions that currently produce AEWs. Given relationships observed in the current climate, such changes in the location of AEW tracks and the magnitude of AEW winds carry implications for the relationship between AEWs and precipitation in the Sahel, the mobilization of Saharan dust, and the likelihood of cyclogenesis in the Atlantic. Our results therefore suggest that changes in AEW characteristics could play a critical role in shaping the response of Atlantic basin climate to future increases in greenhouse gas concentrations.

    View details for DOI 10.1073/pnas.1319597111

    View details for Web of Science ID 000335798000042

    View details for PubMedID 24778244

  • Transient twenty-first century changes in daily-scale temperature extremes in the United States CLIMATE DYNAMICS Scherer, M., Diffenbaugh, N. S. 2014; 42 (5-6): 1383-1404
  • Nonhydrostatic nested climate modeling: A case study of the 2010 summer season over the western United States JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Lebassi-Habtezion, B., Diffenbaugh, N. S. 2013; 118 (19): 10944-10962
  • Near-term acceleration of hydroclimatic change in the western US JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Ashfaq, M., Ghosh, S., Kao, S., Bowling, L. C., Mote, P., Touma, D., Rauscher, S. A., Diffenbaugh, N. S. 2013; 118 (19): 10676-10693
  • Robust increases in severe thunderstorm environments in response to greenhouse forcing PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Diffenbaugh, N. S., Scherer, M., Trapp, R. J. 2013; 110 (41): 16361-16366

    Abstract

    Although severe thunderstorms are one of the primary causes of catastrophic loss in the United States, their response to elevated greenhouse forcing has remained a prominent source of uncertainty for climate change impacts assessment. We find that the Coupled Model Intercomparison Project, Phase 5, global climate model ensemble indicates robust increases in the occurrence of severe thunderstorm environments over the eastern United States in response to further global warming. For spring and autumn, these robust increases emerge before mean global warming of 2 °C above the preindustrial baseline. We also find that days with high convective available potential energy (CAPE) and strong low-level wind shear increase in occurrence, suggesting an increasing likelihood of atmospheric conditions that contribute to the most severe events, including tornadoes. In contrast, whereas expected decreases in mean wind shear have been used to argue for a negative influence of global warming on severe thunderstorms, we find that decreases in shear are in fact concentrated in days with low CAPE and therefore do not decrease the total occurrence of severe environments. Further, we find that the shift toward high CAPE is most concentrated in days with low convective inhibition, increasing the occurrence of high-CAPE/low-convective inhibition days. The fact that the projected increases in severe environments are robust across a suite of climate models, emerge in response to relatively moderate global warming, and result from robust physical changes suggests that continued increases in greenhouse forcing are likely to increase severe thunderstorm occurrence, thereby increasing the risk of thunderstorm-related damage.

    View details for DOI 10.1073/pnas.1307758110

    View details for Web of Science ID 000325395600031

    View details for PubMedID 24062439

  • EXPLAINING EXTREME EVENTS OF 2012 FROM A CLIMATE PERSPECTIVE BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY Peterson, T. C., Hoerling, M. P., Stott, P. A., Herring, S. C., Alexander, L. V., Allen, M. R., Anel, J., Barriopedro, D., Black, M. T., Carey-Smith, T., Castillo, R., Cattiaux, J., Chen, X., Chen, X., Chevallier, M., Christidis, N., Ciavarella, A., de Vries, H., Dean, S. M., Deans, K., Diffenbaugh, N. S., Doblas-Reyes, F., Donat, M. G., Dong, B., Eilerts, G., Funk, C., Galu, G., Garcia-Herrera, R., Germe, A., Gill, S., Gimeno, L., Guemas, V., Herring, S. C., Hoell, A., Hoerling, M. P., Huntingford, C., Husak, G., Imada, Y., Ishii, M., Karoly, D. J., Kimoto, M., King, A. D., Knutson, T. R., Lewis, S. C., Lin, R., Lyon, B., Massey, N., Mazza, E., Michaelsen, J., Michaelsen, J., Mori, M., Mote, P. W., Nieto, R., Otto, F. E., Park, J., Perkins, S. E., Peterson, T. C., Rosier, S., Rowland, J., Rupp, D. E., Salas y Melia, D., Scherer, M., Shiogama, H., Shukla, S., Song, F., Sparrow, S., Scott, P. A., Sutton, R., Sweet, W., Tett, S. F., Trigo, R. M., van Oldenborgh, G. J., van Westrhenen, R., Verdin, J., Watanabe, M., Wittenberg, A. T., Woollings, T., Yiou, P., Zeng, F., Zervas, C., Zhang, R., Zhou, T. 2013; 94 (9)
  • Changes in Ecologically Critical Terrestrial Climate Conditions SCIENCE Diffenbaugh, N. S., Field, C. B. 2013; 341 (6145): 486-492

    Abstract

    Terrestrial ecosystems have encountered substantial warming over the past century, with temperatures increasing about twice as rapidly over land as over the oceans. Here, we review the likelihood of continued changes in terrestrial climate, including analyses of the Coupled Model Intercomparison Project global climate model ensemble. Inertia toward continued emissions creates potential 21st-century global warming that is comparable in magnitude to that of the largest global changes in the past 65 million years but is orders of magnitude more rapid. The rate of warming implies a velocity of climate change and required range shifts of up to several kilometers per year, raising the prospect of daunting challenges for ecosystems, especially in the context of extensive land use and degradation, changes in frequency and severity of extreme events, and interactions with other stresses.

    View details for DOI 10.1126/science.1237123

    View details for Web of Science ID 000322586700039

    View details for PubMedID 23908225

  • Precipitation extremes over the continental United States in a transient, high-resolution, ensemble climate model experiment JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Singh, D., Tsiang, M., Rajaratnam, B., Diffenbaugh, N. S. 2013; 118 (13): 7063-7086

    View details for DOI 10.1002/jgrd.50543

    View details for Web of Science ID 000322192200013

  • MONITORING AND UNDERSTANDING CHANGES IN HEAT WAVES, COLD WAVES, FLOODS, AND DROUGHTS IN THE UNITED STATES: State of Knowledge BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY Peterson, T. C., Heim, R. R., Hirsch, R., Kaiser, D. P., Brooks, H., Diffenbaugh, N. S., Dole, R. M., Giovannettone, J. P., Guirguis, K., Karl, T. R., Katz, R. W., Kunkel, K., Lettenmaier, D., McCabe, G. J., Paciorek, C. J., Ryberg, K. R., Schubert, S., Silva, V. B., Stewart, B. C., Vecchia, A. V., Villarini, G., Vose, R. S., Walsh, J., Wehner, M., Wolock, D., Wolter, K., Woodhouse, C. A., Wuebbles, D. 2013; 94 (6): 821-834
  • The contribution of African easterly waves to monsoon precipitation in the CMIP3 ensemble JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Skinner, C. B., Diffenbaugh, N. S. 2013; 118 (9): 3590-3609

    View details for DOI 10.1002/jgrd.50363

    View details for Web of Science ID 000319744700011

  • Response of snow-dependent hydrologic extremes to continued global warming NATURE CLIMATE CHANGE Diffenbaugh, N. S., Scherer, M., Ashfaq, M. 2013; 3 (4): 379-384
  • Using climate impacts indicators to evaluate climate model ensembles: temperature suitability of premium winegrape cultivation in the United States CLIMATE DYNAMICS Diffenbaugh, N. S., Scherer, M. 2013; 40 (3-4): 709-729
  • Effects of U.S. Tax Policy on Greenhouse Gas Emissions Norhaus, W. D., Cropoper, M. L., de la Chesnaye, F., Diffenbaugh, N., Hawkins, D. G., Mann, R. F., Murray, B. C., Reilly, J. M., Shindell, D., Toder, E., Williams, R. C., Wolfram, C. The National Academies Press. 2013
  • Near-term acceleration of hydroclimatic change in the western U.S. Journal of Geophysical Research Atmospheres Ashfaq, M., Ghosh, S., Kao, S., Bowling, L., Mote, P., Touma, D., Rauscher, S., Diffenbaugh, N. 2013; 118: 10,676–10,693

    View details for DOI 10.1002/jgrd.50816

  • Nonhydrostatic nested climate modeling: A case study of the 2010 summer season over the western United States Journal of Geophysical Research Atmospheres Lebassi-Habtezion, B., Diffenbaugh, N. S. 2013; 118: 10,944–10,962

    View details for DOI 10.1002/jgrd.50773

  • Transient 21st century changes in daily-scale temperature extremes in the United States Climate Dynamics Scherer, M., Diffenbaugh, N. S. 2013: 1829
  • Human well-being, the global emissions debt, and climate change commitment SUSTAINABILITY SCIENCE Diffenbaugh, N. S. 2013; 8 (1): 135-141
  • Response of air stagnation frequency to anthropogenically enhanced radiative forcing ENVIRONMENTAL RESEARCH LETTERS Horton, D. E., Harshvardhan, Diffenbaugh, N. S. 2012; 7 (4)
  • Climate change hotspots in the CMIP5 global climate model ensemble CLIMATIC CHANGE Diffenbaugh, N. S., Giorgi, F. 2012; 114 (3-4): 813-822
  • Out of the Tropics: The Pacific, Great Basin Lakes, and Late Pleistocene Water Cycle in the Western United States SCIENCE Lyle, M., Heusser, L., Ravelo, C., Yamamoto, M., Barron, J., Diffenbaugh, N. S., Herbert, T., Andreasen, D. 2012; 337 (6102): 1629-1633

    Abstract

    The water cycle in the western United States changed dramatically over glacial cycles. In the past 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation has been hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

    View details for DOI 10.1126/science.1218390

    View details for Web of Science ID 000309215400038

    View details for PubMedID 23019644

  • Agriculture and Trade Opportunities for Tanzania: Past Volatility and Future Climate Change REVIEW OF DEVELOPMENT ECONOMICS Ahmed, S. A., Diffenbaugh, N. S., Hertel, T. W., Martin, W. J. 2012; 16 (3): 429-447
  • Response of corn markets to climate volatility under alternative energy futures NATURE CLIMATE CHANGE Diffenbaugh, N. S., Hertel, T. W., Scherer, M., Verma, M. 2012; 2 (7): 514-518

    Abstract

    Recent price spikes(1,2) have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades(3,4). However, commodity price volatility is also influenced by other factors(5,6), which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change.

    View details for DOI 10.1038/NCLIMATE1491

    View details for Web of Science ID 000306249500015

    View details for PubMedID 23243468

  • Amplification of wet and dry month occurrence over tropical land regions in response to global warming JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Lintner, B. R., Biasutti, M., Diffenbaugh, N. S., Lee, J., Niznik, M. J., Findell, K. L. 2012; 117
  • Influence of Twenty-First-Century Atmospheric and Sea Surface Temperature Forcing on West African Climate JOURNAL OF CLIMATE Skinner, C. B., Ashfaq, M., Diffenbaugh, N. S. 2012; 25 (2): 527-542
  • Transient regional climate change: Analysis of the summer climate response in a high-resolution, century-scale ensemble experiment over the continental United States JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Diffenbaugh, N. S., Ashfaq, M., Scherer, M. 2011; 116
  • Higher Hydroclimatic Intensity with Global Warming JOURNAL OF CLIMATE Giorgi, F., Im, E., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L., Shi, Y. 2011; 24 (20): 5309-5324
  • Regional climate of hazardous convective weather through high-resolution dynamical downscaling CLIMATE DYNAMICS Trapp, R. J., Robinson, E. D., Baldwin, M. E., Diffenbaugh, N. S., Schwedler, B. R. 2011; 37 (3-4): 677-688
  • Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries CLIMATIC CHANGE Diffenbaugh, N. S., Scherer, M. 2011; 107 (3-4): 615-624
  • Biophysical considerations in forestry for climate protection FRONTIERS IN ECOLOGY AND THE ENVIRONMENT Anderson, R. G., Canadell, J. G., Randerson, J. T., Jackson, R. B., Hungate, B. A., Baldocchi, D. D., Ban-Weiss, G. A., Bonan, G. B., Caldeira, K., Cao, L., Diffenbaugh, N. S., Gurney, K. R., Kueppers, L. M., Law, B. E., Luyssaert, S., O'Halloran, T. L. 2011; 9 (3): 174-182

    View details for DOI 10.1890/090179

    View details for Web of Science ID 000289377800019

  • Influence of SST biases on future climate change projections CLIMATE DYNAMICS Ashfaq, M., Skinner, C. B., Diffenbaugh, N. S. 2011; 36 (7-8): 1303-1319
  • Climate adaptation wedges: a case study of premium wine in the western United States ENVIRONMENTAL RESEARCH LETTERS Diffenbaugh, N. S., White, M. A., Jones, G. V., Ashfaq, M. 2011; 6 (2)
  • Climate volatility and poverty vulnerability in Tanzania GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS Ahmed, S. A., Diffenbaugh, N. S., Hertel, T. W., Lobell, D. B., Ramankutty, N., Rios, A. R., Rowhani, P. 2011; 21 (1): 46-55
  • Implications of the permanent El Nino teleconnection "blueprint" for past global and North American hydroclimatology CLIMATE OF THE PAST Goldner, A., Huber, M., Diffenbaugh, N., Caballero, R. 2011; 7 (3): 723-743
  • Pleistocene water cycle and eastern boundary current processes along the California continental margin PALEOCEANOGRAPHY Lyle, M., Heusser, L., Ravelo, C., Andreasen, D., Lyle, A. O., Diffenbaugh, N. 2010; 25
  • Temperature and equivalent temperature over the United States (1979-2005) INTERNATIONAL JOURNAL OF CLIMATOLOGY Fall, S., Diffenbaugh, N. S., Niyogi, D., Pielke, R. A., Rochon, G. 2010; 30 (13): 2045-2054

    View details for DOI 10.1002/joc.2094

    View details for Web of Science ID 000284211300013

  • Intensification of hot extremes in the United States GEOPHYSICAL RESEARCH LETTERS Diffenbaugh, N. S., Ashfaq, M. 2010; 37
  • Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Ashfaq, M., Bowling, L. C., Cherkauer, K., Pal, J. S., Diffenbaugh, N. S. 2010; 115
  • Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America GEOLOGY Williams, J. W., Shuman, B., Bartlein, P. J., Diffenbaugh, N. S., Webb, T. 2010; 38 (2): 135-138

    View details for DOI 10.1130/G30413.1

    View details for Web of Science ID 000274209100010

  • Rapid, time-transgressive, and variable responses to end-Pleistocene/early Holocene midcontinental drying in North America Geology Williams, J. W., Shuman, B. N., Bartlein, P. J., Diffenbaugh, N. S., Webb, T. 2010; 38: 135-138
  • Geophysical Research Letters: New Policies Improve Top-Cited Geosciences Journal Eos Transactions American Geophysical Union Calais, E., Diffenbaugh, N., D'Odorico, P., Harris, R., Knorr, W., Lavraud, B., Mueller, A., Peterson, W., Rignot, E., Srokosz, M., Strutton, P., Tyndall, G., Wysession, M., Williams, P. 2010; 91: 337

    View details for DOI 10.1029/2010EO380008

  • Influence of modern land cover on the climate of the United States CLIMATE DYNAMICS Diffenbaugh, N. S. 2009; 33 (7-8): 945-958
  • Evaluation of high-resolution simulations of daily-scale temperature and precipitation over the United States CLIMATE DYNAMICS Walker, M. D., Diffenbaugh, N. S. 2009; 33 (7-8): 1131-1147
  • Land surface coupling in regional climate simulations of the West African monsoon CLIMATE DYNAMICS Steiner, A. L., Pal, J. S., Rauscher, S. A., Bell, J. L., Diffenbaugh, N. S., Boone, A., Sloan, L. C., Giorgi, F. 2009; 33 (6): 869-892
  • Climate volatility deepens poverty vulnerability in developing countries ENVIRONMENTAL RESEARCH LETTERS Ahmed, S. A., Diffenbaugh, N. S., Hertel, T. W. 2009; 4 (3)
  • Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations GEOPHYSICAL RESEARCH LETTERS Trapp, R. J., Diffenbaugh, N. S., Gluhovsky, A. 2009; 36 (1)
  • Suppression of south Asian summer monsoon precipitation in the 21st century GEOPHYSICAL RESEARCH LETTERS Ashfaq, M., Shi, Y., Tung, W., Trapp, R. J., Gao, X., Pal, J. S., Diffenbaugh, N. S. 2009; 36 (1)
  • Land surface coupling in regional climate simulations of the west African monsoon Climate Dynamics Steiner, A. L., Pal, J. S., Rauscher, S. A., Bell, J. L., Diffenbaugh, N. S., Giorgi, F., Sloan, L. C. 2009
  • Climate variability, climate change, and wine production in the western United States Climate Change in Western North America: Evidence and Environmental Effects White, M. A., Jones, G. V., Diffenbaugh, N. S. edited by Wagner, F. H. University of Utah Press. 2009
  • Suppression of South Asian summer monsoon precipitation in the 21st century Geophysical Research Letters Ashfaq, M., Shi, Y., Tung, W. W., Trapp, R. J., Gao, X., Pal, J. S., Diffenbaugh, N. S. 2009; 36

    View details for DOI 10.1029/2008GL036500

  • Evaluation of high-resolution simulations of daily-scale temperature and precipitation over the United States Climate Dynamics Walker, M. D., Diffenbaugh, N. S. 2009
  • Influence of modern land cover on the climate of the United States Climate Dynamics Diffenbaugh, N. S. 2009
  • Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations Geophysical Research Letters Trapp, R. J., Diffenbaugh, N. S., Gluhovsky, A. 2009; 36 (1)

    View details for DOI 10.1029/2008GL036203

  • Protecting climate with forests ENVIRONMENTAL RESEARCH LETTERS Jackson, R. B., Randerson, J. T., Canadell, J. G., Anderson, R. G., Avissar, R., Baldocchi, D. D., Bonan, G. B., Caldeira, K., Diffenbaugh, N. S., Field, C. B., Hungate, B. A., Jobbagy, E. G., Kueppers, L. M., Nosetto, M. D., Pataki, D. E. 2008; 3 (4)
  • Extension and Intensification of the Meso-American mid-summer drought in the twenty-first century CLIMATE DYNAMICS Rauscher, S. A., Giorgi, F., Diffenbaugh, N. S., Seth, A. 2008; 31 (5): 551-571
  • Climate change hotspots in the United States GEOPHYSICAL RESEARCH LETTERS Diffenbaugh, N. S., Giorgi, F., Pal, J. S. 2008; 35 (16)
  • Future changes in snowmelt-driven runoff timing over the western US GEOPHYSICAL RESEARCH LETTERS Rauscher, S. A., Pal, J. S., Diffenbaugh, N. S., Benedetti, M. M. 2008; 35 (16)
  • Developing regional climate change scenarios for use in assessment of effects on human health and disease CLIMATE RESEARCH Giorgi, F., Diffenbaugh, N. 2008; 36 (2): 141-151

    View details for DOI 10.3354/cr00728

    View details for Web of Science ID 000256188800006

  • Global warming presents new challenges for maize pest management Environmental Research Letters Diffenbaugh, N. S., Krupke, C. H., White, M. A., Alexander, C. E. 2008
  • Extension and intensification of the Meso-American mid-summer drought in the 21st century Climate Dynamics Rauscher, S. A., Giorgi, F., Diffenbaugh, N. S., Seth, A. 2008
  • Developing regional climate change scenarios for use in assessment of effects on human health and disease Climate Research Giorgi, F., Diffenbaugh, N. 2008; 36: 141-151
  • Future changes in runoff timing over the western United States Geophysical Research Letters Rauscher, S. A., Pal, J. S., Diffenbaugh, N. S., Benedetti, M. 2008; 35

    View details for DOI 10.1029/2008GL034424

  • Does global warming influence tornado activity? Eos Diffenbaugh, N. S., Trapp, R. J., Brooks, H. E. 2008; 89: 553-554
  • Climate change hotspots in the United States Geophysical Research Letters Diffenbaugh, N. S., Giorgi, F., Pal, J. S. 2008; 35

    View details for DOI 10.1029/2008GL035075

  • Hydrological variability and change Abrupt Climate Change. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research Cook, E. R., Bartlein, P. J., Diffenbaugh, N., Seager, R., Shuman, B. N., Webb, R. S., Williams, J. W., Woodhouse, C. U.S. Geological Survey, Reston, VA. 2008: 143–257
  • The regional climate change hyper-matrix framework Eos Giorgi, F., Diffenbaugh, N. S., Gao, X. J., Coppola, E., Dash, S. K., Frumento, O., Sanda, I. S., Rauscher, S., Remedio, A., Steiner, A., Sylla, B., Zakey, A. 2008; 89: 445-446
  • Indicators of 21st century socioclimatic exposure PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Diffenbaugh, N. S., Giorgi, F., Raymond, L., Bi, X. 2007; 104 (51): 20195-20198

    Abstract

    Policies that attempt to curb greenhouse gas emissions, allocate emissions rights, or distribute compensation to those most damaged by climate change must explicitly incorporate the international heterogeneity of the climate change threat. To capture the distinct susceptibilities associated with lack of infrastructure, potential property loss, and gross human exposure, we develop an integration of climate change projections and poverty, wealth, and population metrics. Our analysis shows that most nations of the world are threatened by the interaction of regional climatic changes with one or more relevant socioeconomic factors. Nations that have the highest levels of poverty, wealth, and population face greater relative exposure in those dimensions. However, for each of those socioeconomic indicators, spatial heterogeneity in projected climate change determines the overall international pattern of socioclimatic exposure. Our synthesis provides a critical missing piece to the climate change debate and should facilitate the formulation of climate policies that account for international variations in the threat of climate change across a range of socioeconomic dimensions.

    View details for DOI 10.1073/pnas.0706680105

    View details for Web of Science ID 000251885000010

    View details for PubMedID 18077324

  • Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Trapp, R. J., Diffenbaugh, N. S., Brooks, H. E., Baldwin, M. E., Robinson, E. D., Pal, J. S. 2007; 104 (50): 19719-19723
  • Telescoping, multimodel approaches to evaluate extreme convective weather under future climates JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Trapp, R. J., Halvorson, B. A., Diffenbaugh, N. S. 2007; 112 (D20)
  • Regional climate modeling for the developing world - The ICTP RegCM3 and RegCNET BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Gao, X., Rauscher, S. A., Francisco, R., Zakey, A., Winter, J., Ashfaq, M., Syed, F. S., Bell, J. L., Diffenbaugh, N. S., Karmacharya, J., Konare, A., Martinez, D., da Rocha, R. P., Sloan, L. C., Steiner, A. L. 2007; 88 (9): 1395-?
  • Response of California Current forcing to mid-Holocene insolation and sea surface temperatures PALEOCEANOGRAPHY Diffenbaugh, N. S., Ashfaq, M. 2007; 22 (3)
  • Heat stress intensification in the Mediterranean climate change hotspot GEOPHYSICAL RESEARCH LETTERS Diffenbaugh, N. S., Pal, J. S., Giorgi, F., Gao, X. 2007; 34 (11)
  • Changes in severe thunderstorm environment frequency in the 21st century due to anthropogenically enhanced global radiative forcing Proceedings of the National Academy of Sciences Trapp, R. J., Diffenbaugh, N. S., Brooks, H. E., Baldwin, M., Robinson, E. D., Pal, J. S. 2007; 104: 19719-19723
  • Diffenbaugh Receives 2006 James R. Holton Junior Scientist Award Eos Transactions American Geophysical Union Harshvardhan, G., Diffenbaugh, N. 2007; 111: 111

    View details for DOI 10.1029/2007EO090011

  • Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET Bulletin of the American Meteorological Society Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Gao, X., Rauscher, S. A., Francisco, R., Zakey, A., Winter, J., Ashfaq, M., Syed, F. S., , Bell, J. L.,, J. L., Diffenbaugh, N. S., , N. S., Karmacharya, J., , J., Konare, A., , A., Martinez, D., , D., da Rocha, R.P., , R. P., Sloan, L.C., , L. C., Steiner, A., A. 2007; 88: 1395-1409
  • Telescoping, multi-model approaches to evaluate extreme convective weather under future climates Journal of Geophysical Research-Atmospheres Trapp, R. J., Halvorson, B. A., Diffenbaugh, N. S. 2007; 112

    View details for DOI 10.1029/2006JD008345

  • Indicators of 21st century socioclimatic exposure Proceedings of the National Academy of Sciences Diffenbaugh, N. S., Giorgi, F., Raymond, L., Bi, X. 2007; 104: 20195-20198
  • Heat stress intensification in the Mediterranean climate change hotspot Geophysical Research Letters Diffenbaugh, N. S., Pal, J. S., Giorgi, F., Gao, X. 2007; 34

    View details for DOI 10.1029/2007GL030000

  • Response of California Current forcing to mid-Holocene changes in insolation and sea surface temperature Paleoceanography Diffenbaugh , N. S., Ashfaq, M. 2007; 22

    View details for DOI 10.1029/2006PA001382

  • Summer aridity in the United States: Response to mid-Holocene changes in insolation and sea surface temperature GEOPHYSICAL RESEARCH LETTERS Diffenbaugh, N. S., Ashfaq, M., Shuman, B., Williams, J. W., Bartlein, P. J. 2006; 33 (22)
  • Extreme heat reduces and shifts United States premium wine production in the 21st century PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA White, M. A., Diffenbaugh, N. S., Jones, G. V., Pal, J. S., Giorgi, F. 2006; 103 (30): 11217-11222

    Abstract

    Premium wine production is limited to regions climatically conducive to growing grapes with balanced composition and varietal typicity. Three central climatic conditions are required: (i) adequate heat accumulation; (ii) low risk of severe frost damage; and (iii) the absence of extreme heat. Although wine production is possible in an extensive climatic range, the highest-quality wines require a delicate balance among these three conditions. Although historical and projected average temperature changes are known to influence global wine quality, the potential future response of wine-producing regions to spatially heterogeneous changes in extreme events is largely unknown. Here, by using a high-resolution regional climate model forced by the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 greenhouse gas emission scenario, we estimate that potential premium winegrape production area in the conterminous United States could decline by up to 81% by the late 21st century. While increases in heat accumulation will shift wine production to warmer climate varieties and/or lower-quality wines, and frost constraints will be reduced, increases in the frequency of extreme hot days (>35 degrees C) in the growing season are projected to eliminate winegrape production in many areas of the United States. Furthermore, grape and wine production will likely be restricted to a narrow West Coast region and the Northwest and Northeast, areas currently facing challenges related to excess moisture. Our results not only imply large changes for the premium wine industry, but also highlight the importance of incorporating fine-scale processes and extreme events in climate-change impact studies.

    View details for DOI 10.1073/pnas.0603230103

    View details for Web of Science ID 000239353900022

    View details for PubMedID 16840557

  • Simulated changes in extreme temperature and precipitation events at 6 ka PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY Diffenbaugh, N. S., Bell, J. L., Sloan, L. C. 2006; 236 (1-2): 151-168
  • Summer aridity in the United States: Response to mid-Holocene changes in insolation and sea surface temperature Geophysical Research Letters Diffenbaugh, N. S., Ashfaq, M., Shuman, B., Williams, J. W., Bartlein, P. J. 2006; 33

    View details for DOI 10.1029/2006GL028012

  • Introduction to the special issue "Glacial-Interglacial Climate of the Past 160,000 Years: New Insights from Data and Models" Palaeogeography, Palaeoclimatology, Palaeoecology Diffenbaugh, N. S., Eakin, C. M., Otto-Bliesner, B. L., Zhao, M. 2006; 236: 1-4
  • Simulated changes in extreme temperature and precipitation events at 6 ka Palaeogeography, Palaeoclimatology, Palaeoecology Diffenbaugh, N. S., Bell, J. L., Sloan, L. C. 2006; 236: 151-168
  • Extreme heat reduces and shifts United States premium wine production in the 21st century Proceedings of the National Academy of Sciences White, M. A., Diffenbaugh, N. S., Jones, G. V., Pal, J. S., Giorgi, F. 2006; 103: 11217-11222
  • Fine-scale processes regulate the response of extreme events to global climate change PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Diffenbaugh, N. S., Pal, J. S., Trapp, R. J., Giorgi, F. 2005; 102 (44): 15774-15778

    Abstract

    We find that extreme temperature and precipitation events are likely to respond substantially to anthropogenically enhanced greenhouse forcing and that fine-scale climate system modifiers are likely to play a critical role in the net response. At present, such events impact a wide variety of natural and human systems, and future changes in their frequency and/or magnitude could have dramatic ecological, economic, and sociological consequences. Our results indicate that fine-scale snow albedo effects influence the response of both hot and cold events and that peak increases in extreme hot events are amplified by surface moisture feedbacks. Likewise, we find that extreme precipitation is enhanced on the lee side of rain shadows and over coastal areas dominated by convective precipitation. We project substantial, spatially heterogeneous increases in both hot and wet events over the contiguous United States by the end of the next century, suggesting that consideration of fine-scale processes is critical for accurate assessment of local- and regional-scale vulnerability to climate change.

    View details for DOI 10.1073/pnas.0506042102

    View details for Web of Science ID 000233090900013

    View details for PubMedID 16236722

  • Response of large-scale eastern boundary current forcing in the 21st century GEOPHYSICAL RESEARCH LETTERS Diffenbaugh, N. S. 2005; 32 (19)
  • Sensitivity of extreme climate events to CO2-induced biophysical atmosphere-vegetation feedbacks in the western United States GEOPHYSICAL RESEARCH LETTERS Diffenbaugh, N. S. 2005; 32 (7)
  • Atmosphere-land cover feedbacks alter the response of surface temperature to CO2 forcing in the western United States CLIMATE DYNAMICS Diffenbaugh, N. S. 2005; 24 (2-3): 237-251
  • Fine-scale processes regulate the response of extreme events to global climate change Proceedings of the National Academy of Sciences Diffenbaugh, N. S., Pal, J. S., Trapp, R. J., Giorgi, F. 2005; 102: 15774-15778
  • Sensitivity of extreme climate events to CO2-induced biophysical atmosphere-vegetation feedbacks in the western United States Geophysical Research Letters Diffenbaugh, N. S. 2005; 32

    View details for DOI 10.1029/2004GL022184

  • Atmosphere-land cover feedbacks alter the response of surface temperature to CO2 forcing in the western United States Climate Dynamics Diffenbaugh, N. S. 2005; 24: 237-251
  • Response of large-scale eastern boundary current forcing in the 21st century Geophysical Research Letters Diffenbaugh, N. S. 2005; 32

    View details for DOI 10.1029/2005GL023905

  • Mid-Holocene orbital forcing of regional-scale climate: A case study of western North America using a high-resolution RCM JOURNAL OF CLIMATE Diffenbaugh, N. S., Sloan, L. C. 2004; 17 (15): 2927-2937
  • The effects of late Quaternary climate and pCO(2) change on C-4 plant abundance in the south-central United States PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY Koch, P. L., Diffenbaugh, N. S., Hoppe, K. A. 2004; 207 (3-4): 331-357
  • Could CO2-induced land-cover feedbacks alter near-shore upwelling regimes? PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Diffenbaugh, N. S., Snyder, M. A., Sloan, L. C. 2004; 101 (1): 27-32

    Abstract

    The response of marine and terrestrial environments to global changes in atmospheric carbon dioxide (CO(2)) concentrations will likely be governed by both responses to direct environmental forcing and responses to Earth-system feedbacks induced by that forcing. It has been proposed that anthropogenic greenhouse forcing will intensify coastal upwelling in eastern boundary current regions [Bakun, A. (1990) Science 247, 198-201]. Focusing on the California Current, we show that biophysical land-cover-atmosphere feedbacks induced by CO(2) radiative forcing enhance the radiative effects of CO(2) on land-sea thermal contrast, resulting in changes in eastern boundary current total seasonal upwelling and upwelling seasonality. Specifically, relative to CO(2) radiative forcing, land-cover-atmosphere feedbacks lead to a stronger increase in peak- and late-season near-shore upwelling in the northern limb of the California Current and a stronger decrease in peak- and late-season near-shore upwelling in the southern limb. Such changes will impact both marine and terrestrial communities [Bakun, A. (1990) Science 247, 198-201; Soto, C. G. (2001) Rev. Fish Biol. Fish. 11, 181-195; and Agostini, V. N. & Bakun, A. (2002) Fish. Oceanogr. 11, 129-142], and these and other Earth-system feedbacks should be expected to play a substantial role in shaping the response of eastern boundary current regions to CO(2) radiative forcing.

    View details for DOI 10.1073/pnas.0305746101

    View details for Web of Science ID 000187937200008

    View details for PubMedID 14691256

  • Mid-Holocene orbital forcing of regional-scale climate: a case study of western North America using a high-resolution RCM Journal of Climate Diffenbaugh, N. S., Sloan, L. C. 2004; 17: 2927-2937
  • Could CO2-induced land cover feedbacks alter near-shore upwelling regimes? Proceedings of the National Academy of Sciences Diffenbaugh, N. S., Snyder, M. A., Sloan, L. C. 2004; 101: 27-31
  • Future climate change and upwelling in the California Current GEOPHYSICAL RESEARCH LETTERS Snyder, M. A., Sloan, L. C., Diffenbaugh, N. S., Bell, J. L. 2003; 30 (15)
  • Orbital suppression of wind-driven upwelling in the California Current at 6 ka PALEOCEANOGRAPHY Diffenbaugh, N. S., Sloan, L. C., Snyder, M. A. 2003; 18 (2)
  • Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region GLOBAL BIOGEOCHEMICAL CYCLES Diffenbaugh, N. S., Sloan, L. C., Snyder, M. A., Bell, J. L., Kaplan, J., Shafer, S. L., Bartlein, P. J. 2003; 17 (2)
  • Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region Global Biogeochemical Cycles Diffenbaugh, N. S., Sloan, L. C., Snyder, M. A., Bell, J. L., Kaplan, J. O., Shafer, S. L., Bartlein, P. J. 2003; 18: 1067

    View details for DOI 10.1029/2002GB001974

  • Future climate change and upwelling in the California Current Geophysical Research Letters Snyder, M. A., Sloan, L. C., Diffenbaugh, N. S., Bell, J. L. 2003; 30: 1823

    View details for DOI 10.1029/2003GL017647

  • Orbital suppression of wind driven upwelling in the California Current at 6 ka Paleoceanography Diffenbaugh, N. S., Sloan, L. C., Snyder, M. A. 2003; 18: 1051

    View details for DOI 10.1019/2002PA000865

  • Global climate sensitivity to land surface change: The Mid Holocene revisited GEOPHYSICAL RESEARCH LETTERS Diffenbaugh, N. S., Sloan, L. C. 2002; 29 (10)
  • Global climate sensitivity to land surface change: The Mid Holocene revisited Geophysical Research Letters Diffenbaugh, N. S., Sloan, L. C. 2002; 29: 1476

    View details for DOI 10.1029/2002GL014880