
Sean Follmer
Assistant Professor of Mechanical Engineering and, by courtesy, of Computer Science
Bio
Sean Follmer is an Assistant Professor of Mechanical Engineering and Computer Science (by courtesy) at Stanford University. His Research in Human Computer Interaction, Haptics, and Human Robot Interaction explores the design of novel tactile physical interfaces and novel robotic devices. Dr. Follmer directs the Stanford Shape Lab and is a faculty member of the Stanford HCI Group. He is a core faculty member of the Design Impact masters program focusing on innovation and human centered design at Stanford.
The Shape lab explores how we can interact with digital information in a more physical and tangible way. Towards our goal of more human centered computing, we believe that interaction must be grounded in the physical world and leverage our innate abilities for spatial cognition and dexterous manipulation with our hands. We develop advanced technologies in robotics, mechatronics, and sensing to create interactive, dynamic physical 3D displays and haptic interfaces that allow 3D information to be touched as well as seen. We are specifically interested in using these novel interfaces to support richer remote collaboration, computer aided design, education, and interfaces for people with visual impairments. In pursuit of these goals, we use a design process grounded in iterative prototyping and human centered design and look to create new understanding about human perception and interaction through controlled studies.
Our research in Human Computer Interaction and Human Machine Interaction currently directed the following areas:
- Shape Changing and Tangible User Interfaces
- Haptic Interaction
- Accessible User Interfaces for People who Are Blind and Visually Impaired
- Shape Changing Robotics
- Design and Debugging Tools for Physical Computing and Robotic Systems
Dr. Follmer received a PhD and a Masters from the MIT Media Lab in 2015 and 2011 (respectively) for his work in human-computer interaction, and a BS in Engineering with a focus on Product Design from Stanford University. His talk featured on TED.com was named one of the best science and tech TED talks of 2015 and has been viewed more than 1.5 million times. He has received numerous awards for his research and design work such as an Alfred P. Sloan Fellowship, 17 Best Paper Awards and nominations from premier conferences in human-computer interaction (including Five Best papers at ACM UIST, One Best Paper at ACM CHI and an IMWUT Distinguished Paper Award), Fast Company Innovation By Design Award, Red Dot Design Award, and a Laval Virtual Award. His work has been shown at the Smithsonian Cooper Hewitt Design Museum, Ars Electronica Center, and the Milan Design Week.
Academic Appointments
-
Assistant Professor, Mechanical Engineering
-
Assistant Professor (By courtesy), Computer Science
-
Member, Bio-X
-
Faculty Affiliate, Institute for Human-Centered Artificial Intelligence (HAI)
Honors & Awards
-
Best Paper Award, ACM CHI 2021 (2021)
-
Sloan Research Fellowship, Alfred P. Sloan Foundation (2021)
-
Best Short Paper Award, ACM VRST (2019)
-
Distinguished Paper Award, ACM IMWUT Volume 2 (2019)
-
Best Paper Award, ACM UIST 2017 (2017)
-
Google Faculty Research Award, Google (2017)
-
Best Demo Award, ACM UIST 2016 (2016)
-
Best Paper Award (x2), ACM UIST 2016 (2016)
-
Google Faculty Research Award, Google (2016)
-
Best Paper Award, ACM UIST 2013 (2013)
-
Best Paper Award, ACM UIST 2012 (2012)
Program Affiliations
-
Symbolic Systems Program
Professional Education
-
Postdoctoral Associate, MIT Media Lab (2015)
-
PhD, MIT Media Lab (2015)
-
S.M., MIT Media Lab (2011)
Current Research and Scholarly Interests
Human Computer Interaction, Haptics, Robotics, Human Centered Design
2020-21 Courses
- Design Impact Master's Project I
ME 316A (Aut) - Design Impact Master's Project II
ME 316B (Win) - Design Impact Master's Project III
ME 316C (Spr) - Product Design Methods
ME 115B (Spr) -
Independent Studies (20)
- Advanced Reading and Research
CS 499 (Aut, Win, Spr, Sum) - Advanced Reading and Research
CS 499P (Aut, Win, Spr) - Computer Laboratory
CS 393 (Spr, Sum) - Curricular Practical Training
CS 390A (Aut, Win, Spr, Sum) - Curricular Practical Training
CS 390B (Win, Spr, Sum) - Curricular Practical Training
CS 390C (Spr, Sum) - Engineering Problems
ME 391 (Aut, Win, Spr) - Engineering Problems and Experimental Investigation
ME 191 (Aut, Win, Spr) - Experimental Investigation of Engineering Problems
ME 392 (Aut, Win, Spr) - Independent Database Project
CS 395 (Spr, Sum) - Independent Project
CS 399 (Spr, Sum) - Independent Project
CS 399P (Spr, Sum) - Independent Work
CS 199 (Spr, Sum) - Independent Work
CS 199P (Spr, Sum) - Part-time Curricular Practical Training
CS 390D (Aut, Win) - Ph.D. Research Rotation
ME 398 (Aut, Win, Spr, Sum) - Programming Service Project
CS 192 (Spr, Sum) - Senior Project
CS 191 (Spr, Sum) - Supervised Undergraduate Research
CS 195 (Spr, Sum) - Writing Intensive Senior Project (WIM)
CS 191W (Spr)
- Advanced Reading and Research
-
Prior Year Courses
2019-20 Courses
- Design Impact Master's Project I
ME 316A (Aut) - Introduction to the Design of Smart Products
CS 377N, ME 216M (Spr) - Product Design Methods
ME 115B (Win)
2018-19 Courses
- Design Impact Master's Project I
ME 316A (Aut) - Introduction to the Design of Smart Products
ME 216M (Spr) - Product Design Methods
ME 115B (Win)
2017-18 Courses
- Advanced Product Design: Implementation 1
ME 216B (Win) - Introduction to the Design of Smart Products
ME 216M (Spr) - Product Design Methods
ME 115B (Win)
- Design Impact Master's Project I
Stanford Advisees
-
Doctoral Dissertation Reader (AC)
So Yeon Park, Mike Salvato -
Doctoral Dissertation Advisor (AC)
Elyse Chase, Savannah Cofer, Eric Gonzalez, Zack Hammond, Ahad Rauf, Alexa Siu, Anthony Stuart, Elizabeth Vasquez -
Doctoral Dissertation Co-Advisor (AC)
Parastoo Abtahi, Adam Caccavale, Shenli Yuan -
Master's Program Advisor
Eleni Alexandraki, Camille Berry, Eli Davis, Vivienne Hay, Sandesh Manik -
Doctoral (Program)
Dan Fan, Jingyi Li, Alessandra Napoli
All Publications
-
Design and Analysis of High-Resolution Electrostatic Adhesive Brakes Towards Static Refreshable 2.5D Tactile Shape Display
IEEE TRANSACTIONS ON HAPTICS
2019; 12 (4): 470–82
Abstract
Tactile displays are haptic devices capable of rendering shape and texture information. Unsolved challenges in building tactile shape displays include their traditionally large form factors, low spatial resolution, and high costs. Using electrostatic adhesion to individually brake each pin and a single platform for global actuation, we developed a prototype static refreshable tactile shape display with high spatial resolution (1.7 mm pitch, 0.8 mm pin width; 4 mm pitch, 1.6 mm pin width), high resistance force (76.3 gf static-loading force per pin for 1.6 mm width) and low cost ($0.11 USD per pin for raw material). We present an analytical model of our electroadhesive brake mechanism and evaluate its maximum contact force and robustness in various conditions. To demonstrate the mechanism's potential, we built a static tactile shape display prototype with a 4×2 array of pins controlled using electroadhesive brakes. To further increase maximsum contact force allowed by our device, we develop and evaluate a global mechanical clutch which can be engaged during user interaction. A user study is carried out to compare our static tactile shape display's performance with printed 2.5D tactile graphics in a shape recognition task, and comparable shape recognition rates and response times are observed.
View details for DOI 10.1109/TOH.2019.2940219
View details for Web of Science ID 000505585900008
View details for PubMedID 31545743
-
Beyond The Force: Using Quadcopters to Appropriate Objects and the Environment for Haptics in Virtual Reality
ASSOC COMPUTING MACHINERY. 2019
View details for DOI 10.1145/3290605.3300589
View details for Web of Science ID 000474467904051
-
Editing Spatial Layouts through Tactile Templates for People with Visual Impairments
ASSOC COMPUTING MACHINERY. 2019
View details for DOI 10.1145/3290605.3300436
View details for Web of Science ID 000474467902057
-
Pinpoint: A PCB Debugging Pipeline Using Interruptible Routing and Instrumentation
ASSOC COMPUTING MACHINERY. 2019
View details for DOI 10.1145/3290605.3300278
View details for Web of Science ID 000474467900048
-
SwarmHaptics: Haptic Display with Swarm Robots
ASSOC COMPUTING MACHINERY. 2019
View details for DOI 10.1145/3290605.3300918
View details for Web of Science ID 000474467908067
-
Dynamic Composite Data Physicalization Using Wheeled Micro-Robots.
IEEE transactions on visualization and computer graphics
2018
Abstract
This paper introduces dynamic composite physicalizations, a new class of physical visualizations that use collections of self-propelled objects to represent data. Dynamic composite physicalizations can be used both to give physical form to well-known interactive visualization techniques, and to explore new visualizations and interaction paradigms. We first propose a design space characterizing composite physicalizations based on previous work in the fields of Information Visualization and Human Computer Interaction. We illustrate dynamic composite physicalizations in two scenarios demonstrating potential benefits for collaboration and decision making, as well as new opportunities for physical interaction. We then describe our implementation using wheeled micro-robots capable of locating themselves and sensing user input, before discussing limitations and opportunities for future work.
View details for DOI 10.1109/TVCG.2018.2865159
View details for PubMedID 30136993
-
Electrostatic Adhesive Brakes for High Spatial Resolution Refreshable 2.5D Tactile Shape Displays
IEEE. 2018: 319–26
View details for Web of Science ID 000434958700052
-
An Accessible CAD Workflow Using Programming of 3D Models and Preview Rendering in A 2.5D Shape Display
ASSOC COMPUTING MACHINERY. 2018: 343–45
View details for DOI 10.1145/3234695.3240996
View details for Web of Science ID 000455178500034
-
Investigating Tangible Collaboration for Design Towards Augmented Physical Telepresence
DESIGN THINKING RESEARCH: MAKING DISTINCTIONS: COLLABORATION VERSUS COOPERATION
2018: 131–45
View details for DOI 10.1007/978-3-319-60967-6_7
View details for Web of Science ID 000432741300008
-
Designing Line-Based Shape-Changing Interfaces
IEEE PERVASIVE COMPUTING
2017; 16 (4): 36–46
View details for Web of Science ID 000414423400008
-
shiftIO: Reconfigurable Tactile Elements for Dynamic Affordances and Mobile Interaction
ASSOC COMPUTING MACHINERY. 2017: 5075–86
View details for DOI 10.1145/3025453.3025988
View details for Web of Science ID 000426970504081
-
Shape Displays: Spatial Interaction with Dynamic Physical Form
IEEE COMPUTER GRAPHICS AND APPLICATIONS
2015; 35 (5): 5-11
View details for Web of Science ID 000361969200002
View details for PubMedID 26416359
-
Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-Changing Devices
UIST'12: PROCEEDINGS OF THE 25TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY
2012: 519-528
View details for Web of Science ID 000324815300054
-
d.note: Revising User Interfaces Through Change Tracking, Annotations, and Alternatives
28th Annual CHI Conference on Human Factors in Computing Systems
ASSOC COMPUTING MACHINERY. 2010: 493–502
View details for Web of Science ID 000281276700055
-
Family Story Play: Reading with Young Children (and Elmo) Over a Distance
CHI2010: PROCEEDINGS OF THE 28TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4
2010: 1583-1592
View details for Web of Science ID 000281276701020