Sean Follmer is an Assistant Professor of Mechanical Engineering and Computer Science (by courtesy) at Stanford University. His Research in Human Computer Interaction, Haptics, and Human Robot Interaction explores the design of novel tactile physical interfaces and novel robotic devices. Dr. Follmer directs the Stanford Shape Lab and is a faculty member of the Stanford HCI Group. He is a core faculty member of the Design Impact masters program focusing on innovation and human centered design at Stanford.

The Shape lab explores how we can interact with digital information in a more physical and tangible way. Towards our goal of more human centered computing, we believe that interaction must be grounded in the physical world and leverage our innate abilities for spatial cognition and dexterous manipulation with our hands. We develop advanced technologies in robotics, mechatronics, and sensing to create interactive, dynamic physical 3D displays and haptic interfaces that allow 3D information to be touched as well as seen. We are specifically interested in using these novel interfaces to support richer remote collaboration, computer aided design, education, and interfaces for people with visual impairments. In pursuit of these goals, we use a design process grounded in iterative prototyping and human centered design and look to create new understanding about human perception and interaction through controlled studies.

Our research in Human Computer Interaction and Human Robot Interaction currently directed in five areas:
Dynamic physical shape displays
Wearable Haptics for grasping in VR
Ubiquitous Robotic Interfaces
Mobile Haptics
Soft actuation and Sensing

Dr. Follmer received a PhD and a Masters from the MIT Media Lab in 2015 and 2011 (respectively) for his work in human-computer interaction, and a BS in Engineering with a focus on Product Design from Stanford University. His talk featured on was named one of the best science and tech TED talks of 2015 and has been viewed more than 1.4 million times. He has received numerous awards for his research and design work such as Best Paper Awards and nominations from premier conferences in human-computer interaction (ACM UIST and CHI conferences), Fast Company Innovation By Design Award, Red Dot Design Award, and a Laval Virtual Award. His work has been shown at the Smithsonian Cooper Hewitt Design Museum, Ars Electronica Center, and the Milan Design Week. Dr. Follmer also leads workshops and executive education around design thinking and innovation.

Academic Appointments

Honors & Awards

  • Best Paper Award, ACM UIST 2012 (2012)
  • Best Paper Award, ACM UIST 2013 (2013)
  • Best Demo Award, ACM UIST 2016 (2016)
  • Best Paper Award (x2), ACM UIST 2016 (2016)
  • Best Paper Award, ACM UIST 2017 (2017)
  • Best Short Paper Award, ACM VRST (2019)
  • Distinguished Paper Award, ACM IMWUT Volume 2 (2019)

Program Affiliations

  • Symbolic Systems Program

Professional Education

  • Postdoctoral Associate, MIT Media Lab (2015)
  • PhD, MIT Media Lab (2015)
  • S.M., MIT Media Lab (2011)

Current Research and Scholarly Interests

Human Computer Interaction, Haptics, Robotics, Human Centered Design

Stanford Advisees

  • Doctoral Dissertation Reader (AC)
    Alex Gruebele, Mike Salvato
  • Orals Chair
    Ana Tarano
  • Postdoctoral Faculty Sponsor
    Dan Drew
  • Doctoral Dissertation Advisor (AC)
    Elyse Chase, Eric Gonzalez, Zack Hammond, Alexa Siu, Anthony Stuart, Elizabeth Vasquez
  • Orals Evaluator
    Evan Strasnick
  • Doctoral Dissertation Co-Advisor (AC)
    Parastoo Abtahi, Adam Caccavale, Evan Strasnick, Shenli Yuan
  • Master's Program Advisor
    Eleni Alexandraki, Cesar Arevalo, Camille Berry, Eli Davis, Vivienne Hay, Sandesh Manik, Melinda Wang
  • Postdoctoral Research Mentor
    Dan Drew
  • Doctoral (Program)
    Dan Fan, Jingyi Li, Alessandra Napoli

All Publications

  • Design and Analysis of High-Resolution Electrostatic Adhesive Brakes Towards Static Refreshable 2.5D Tactile Shape Display IEEE TRANSACTIONS ON HAPTICS Zhang, K., Gonzalez, E. J., Guo, J., Follmer, S. 2019; 12 (4): 470–82


    Tactile displays are haptic devices capable of rendering shape and texture information. Unsolved challenges in building tactile shape displays include their traditionally large form factors, low spatial resolution, and high costs. Using electrostatic adhesion to individually brake each pin and a single platform for global actuation, we developed a prototype static refreshable tactile shape display with high spatial resolution (1.7 mm pitch, 0.8 mm pin width; 4 mm pitch, 1.6 mm pin width), high resistance force (76.3 gf static-loading force per pin for 1.6 mm width) and low cost ($0.11 USD per pin for raw material). We present an analytical model of our electroadhesive brake mechanism and evaluate its maximum contact force and robustness in various conditions. To demonstrate the mechanism's potential, we built a static tactile shape display prototype with a 4×2 array of pins controlled using electroadhesive brakes. To further increase maximsum contact force allowed by our device, we develop and evaluate a global mechanical clutch which can be engaged during user interaction. A user study is carried out to compare our static tactile shape display's performance with printed 2.5D tactile graphics in a shape recognition task, and comparable shape recognition rates and response times are observed.

    View details for DOI 10.1109/TOH.2019.2940219

    View details for Web of Science ID 000505585900008

    View details for PubMedID 31545743

  • Beyond The Force: Using Quadcopters to Appropriate Objects and the Environment for Haptics in Virtual Reality Abtahi, P., Landry, B., Yang, J., Pavone, M., Follmer, S., Landay, J. A., Assoc Comp Machinery ASSOC COMPUTING MACHINERY. 2019
  • Editing Spatial Layouts through Tactile Templates for People with Visual Impairments Li, J., Kim, S., Miele, J. A., Agrawala, M., Follmer, S., Assoc Comp Machinery ASSOC COMPUTING MACHINERY. 2019
  • Pinpoint: A PCB Debugging Pipeline Using Interruptible Routing and Instrumentation Strasnick, E., Follmer, S., Agrawala, M., Assoc Comp Machinery ASSOC COMPUTING MACHINERY. 2019
  • SwarmHaptics: Haptic Display with Swarm Robots Kim, L. H., Follmer, S., Assoc Comp Machinery ASSOC COMPUTING MACHINERY. 2019
  • Dynamic Composite Data Physicalization Using Wheeled Micro-Robots. IEEE transactions on visualization and computer graphics Goc, M. L., Perin, C., Follmer, S., Fekete, J., Dragicevic, P. 2018


    This paper introduces dynamic composite physicalizations, a new class of physical visualizations that use collections of self-propelled objects to represent data. Dynamic composite physicalizations can be used both to give physical form to well-known interactive visualization techniques, and to explore new visualizations and interaction paradigms. We first propose a design space characterizing composite physicalizations based on previous work in the fields of Information Visualization and Human Computer Interaction. We illustrate dynamic composite physicalizations in two scenarios demonstrating potential benefits for collaboration and decision making, as well as new opportunities for physical interaction. We then describe our implementation using wheeled micro-robots capable of locating themselves and sensing user input, before discussing limitations and opportunities for future work.

    View details for DOI 10.1109/TVCG.2018.2865159

    View details for PubMedID 30136993

  • Investigating Tangible Collaboration for Design Towards Augmented Physical Telepresence DESIGN THINKING RESEARCH: MAKING DISTINCTIONS: COLLABORATION VERSUS COOPERATION Siu, A. F., Yuan, S., Pham, H., Gonzalez, E., Kim, L. H., Le Goc, M., Follmer, S., Plattner, H., Meinel, C., Leifer, L. 2018: 131–45
  • Electrostatic Adhesive Brakes for High Spatial Resolution Refreshable 2.5D Tactile Shape Displays Zhang, K., Follmer, S., Kuchenbecker, K. J., Gerling, G. J., Visell, Y. IEEE. 2018: 319–26
  • An Accessible CAD Workflow Using Programming of 3D Models and Preview Rendering in A 2.5D Shape Display Siu, A. F., Miele, J., Follmer, S., Assoc Comp Machinery ASSOC COMPUTING MACHINERY. 2018: 343–45
  • Designing Line-Based Shape-Changing Interfaces IEEE PERVASIVE COMPUTING Nakagaki, K., Follmer, S., Dementyev, A., Paradiso, J. A., Ishii, H. 2017; 16 (4): 36–46
  • shiftIO: Reconfigurable Tactile Elements for Dynamic Affordances and Mobile Interaction Strasnick, E., Yang, J., Tanner, K., Olwal, A., Follmer, S., ACM ASSOC COMPUTING MACHINERY. 2017: 5075–86
  • Shape Displays: Spatial Interaction with Dynamic Physical Form IEEE COMPUTER GRAPHICS AND APPLICATIONS Leithinger, D., Follmer, S., Olwal, A., Ishii, H. 2015; 35 (5): 5-11

    View details for Web of Science ID 000361969200002

    View details for PubMedID 26416359

  • Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-Changing Devices UIST'12: PROCEEDINGS OF THE 25TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY Follmer, S., Leithinger, D., Olwal, A., Cheng, N., Ishii, H. 2012: 519-528
  • d.note: Revising User Interfaces Through Change Tracking, Annotations, and Alternatives 28th Annual CHI Conference on Human Factors in Computing Systems Hartmann, B., Follmer, S., Ricciardi, A., Cardenas, T., Klemmer, S. R. ASSOC COMPUTING MACHINERY. 2010: 493–502
  • Family Story Play: Reading with Young Children (and Elmo) Over a Distance CHI2010: PROCEEDINGS OF THE 28TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4 Raffle, H., Ballagas, R., Revelle, G., Horii, H., Follmer, S., Go, J., Reardon, E., Mori, K., Kaye, J. '., Spasojevic, M. 2010: 1583-1592