Bio


William Greenleaf is a Professor in the Genetics Department at Stanford University School of Medicine, with a courtesy appointment in the Applied Physics Department. He is a member of Bio-X, the Biophysics Program, the Biomedical Informatics Program, and the Cancer Center. He received an A.B. in physics from Harvard University in 2002, and received a Gates Fellowship to study computer science for one year in Trinity College, Cambridge, UK. He returned to Stanford to carry out his Ph.D. in Applied Physics in the laboratory of Steven Block, where he investigated, at the single molecule level, the chemo-mechanics of RNA polymerase and the folding of RNA transcripts. He conducted postdoctoral work in the laboratory of X. Sunney Xie in the Chemistry and Chemical Biology Department at Harvard University, where he was awarded a Damon Runyon Cancer Research Foundation Fellowship, and developed new fluorescence-based high-throughput sequencing methodologies. He moved to Stanford as an Assistant Professor in November 2011. Since beginning his lab, he has been named a Rita Allen Foundation Young Scholar, an Ellison Foundation Young Scholar in Aging (declined), a Baxter Foundation Scholar, a Chan-Zuckerberg Investigator, and Arc Institute Innovation Investigator, and received the NIH Director's Pioneer Award. His highly interdisciplinary research links molecular biology, computer science, bioengineering, and genomics a to understand how the physical state of the human genome controls gene regulation and biological state. Efforts in his lab are split between building new tools to leverage the power of high-throughput sequencing and cutting-edge microscopies, and bringing these new technologies to bear against basic biological questions of genomic and epigenomic regulation. His long-term goal is to unlock an understanding of the physical “regulome” — i.e. the factors that control how the genetic information is read into biological instructions — to develop a quantitative understanding of how cells maintain, or fail to maintain, their state in health and disease.

Honors & Awards


  • Arc Institute Innovation Investigator, Arc Institute (2023-)
  • Pioneer Award, NIH (2023-)
  • Chan-Zuckerberg Fellow, Chan-Zuckerberg Foundation (2017-2022)
  • Baxter Foundation Faculty Fellow, Baxter Foundation (2014)
  • Rita Allen Scholar, Rita Allen Foundation (2011)
  • Damon Runyon Cancer Research Fellowship, Damon Runyon Foundation (2009-2011)
  • ARCS Fellowship, ARCS (2006)
  • Graduate Fellowship, National Science Foundation (2003-2005)
  • Gates Cambridge Trust Scholar, Gates Foundation (2002-2003)

Professional Education


  • Postdoctoral Fellow, Harvard University, Chemistry and Chemical Biology
  • PhD, Stanford University, Applied Physics (2008)
  • Dip Comp Sci, Trinity College, Cambridge University, UK, Computer Science (2003)
  • AB, Harvard University, Physics (2002)

Current Research and Scholarly Interests


Our lab focuses on developing methods to probe both the structure and function of molecules encoded by the genome, as well as the physical compaction and folding of the genome itself. Our efforts are split between building new tools to leverage the power of high-throughput sequencing technologies and cutting-edge optical microscopies, and bringing these technologies to bear against basic biological questions by linking DNA sequence, structure, and function.

2024-25 Courses


Stanford Advisees


Graduate and Fellowship Programs


All Publications


  • Multiomic analysis of familial adenomatous polyposis reveals molecular pathways associated with early tumorigenesis. Nature cancer Esplin, E. D., Hanson, C., Wu, S., Horning, A. M., Barapour, N., Nevins, S. A., Jiang, L., Contrepois, K., Lee, H., Guha, T. K., Hu, Z., Laquindanum, R., Mills, M. A., Chaib, H., Chiu, R., Jian, R., Chan, J., Ellenberger, M., Becker, W. R., Bahmani, B., Khan, A., Michael, B., Weimer, A. K., Esplin, D. G., Shen, J., Lancaster, S., Monte, E., Karathanos, T. V., Ladabaum, U., Longacre, T. A., Kundaje, A., Curtis, C., Greenleaf, W. J., Ford, J. M., Snyder, M. P. 2024

    Abstract

    Familial adenomatous polyposis (FAP) is a genetic disease causing hundreds of premalignant polyps in affected persons and is an ideal model to study transitions of early precancer states to colorectal cancer (CRC). We performed deep multiomic profiling of 93 samples, including normal mucosa, benign polyps and dysplastic polyps, from six persons with FAP. Transcriptomic, proteomic, metabolomic and lipidomic analyses revealed a dynamic choreography of thousands of molecular and cellular events that occur during precancerous transitions toward cancer formation. These involve processes such as cell proliferation, immune response, metabolic alterations (including amino acids and lipids), hormones and extracellular matrix proteins. Interestingly, activation of the arachidonic acid pathway was found to occur early in hyperplasia; this pathway is targeted by aspirin and other nonsteroidal anti-inflammatory drugs, a preventative treatment under investigation in persons with FAP. Overall, our results reveal key genomic, cellular and molecular events during the earliest steps in CRC formation and potential mechanisms of pharmaceutical prophylaxis.

    View details for DOI 10.1038/s43018-024-00831-z

    View details for PubMedID 39478120

    View details for PubMedCentralID 2706149

  • Global loss of promoter-enhancer connectivity and rebalancing of gene expression during early colorectal cancer carcinogenesis. Nature cancer Zhu, Y., Lee, H., White, S., Weimer, A. K., Monte, E., Horning, A., Nevins, S. A., Esplin, E. D., Paul, K., Krieger, G., Shipony, Z., Chiu, R., Laquindanum, R., Karathanos, T. V., Chua, M. W., Mills, M., Ladabaum, U., Longacre, T., Shen, J., Jaimovich, A., Lipson, D., Kundaje, A., Greenleaf, W. J., Curtis, C., Ford, J. M., Snyder, M. P. 2024

    Abstract

    Although three-dimensional (3D) genome architecture is crucial for gene regulation, its role in disease remains elusive. We traced the evolution and malignant transformation of colorectal cancer (CRC) by generating high-resolution chromatin conformation maps of 33 colon samples spanning different stages of early neoplastic growth in persons with familial adenomatous polyposis (FAP). Our analysis revealed a substantial progressive loss of genome-wide cis-regulatory connectivity at early malignancy stages, correlating with nonlinear gene regulation effects. Genes with high promoter-enhancer (P-E) connectivity in unaffected mucosa were not linked to elevated baseline expression but tended to be upregulated in advanced stages. Inhibiting highly connected promoters preferentially represses gene expression in CRC cells compared to normal colonic epithelial cells. Our results suggest a two-phase model whereby neoplastic transformation reduces P-E connectivity from a redundant state to a rate-limiting one for transcriptional levels, highlighting the intricate interplay between 3D genome architecture and gene regulation during early CRC progression.

    View details for DOI 10.1038/s43018-024-00823-z

    View details for PubMedID 39478119

    View details for PubMedCentralID 7541718

  • Exploring the energetic and conformational properties of the sequence space connecting naturally occurring RNA tetraloop receptor motifs. RNA (New York, N.Y.) Shin, J. H., Cuevas, L. M., Roy, R., Bonilla, S. L., Al-Hashimi, H., Greenleaf, W. J., Herschlag, D. 2024

    Abstract

    Folded RNAs contain tertiary contact motifs whose structures and energetics are conserved across different RNAs. The transferable properties of RNA motifs simplify the RNA folding problem, but measuring energetic and conformational properties of many motifs remains a challenge. Here, we use a high-throughput thermodynamic approach to investigate how sequence changes alter the binding properties of naturally-occurring motifs, the GAAA tetraloop•tetraloop receptor (TLR) interactions. We measured the binding energies and conformational preferences of TLR sequences that span mutational pathways from the canonical 11ntR to two other natural TLRs, the IC3R and Vc2R. While the IC3R and Vc2R share highly similar energetic and conformational properties, the landscapes that map the sequence changes for their conversion from the 11ntR to changes in these properties differ dramatically. Differences in the energetic landscapes stem from the mutations needed to convert the 11ntR to the IC3R and Vc2R rather than a difference in the intrinsic energetic architectures of these TLRs. The conformational landscapes feature several non-native TLR variants with conformational preferences that differ from both the initial and final TLRs; these species represent potential branching points along the multidimensional sequence space to sequences with greater fitness in other RNA contexts with alternative conformational preferences. Our high-throughput, quantitative approach reveals the complex nature of sequence-fitness landscapes and leads to models for their molecular origins. Systematic and quantitative molecular approaches provide critical insights into understanding the evolution of natural RNAs as they traverse complex landscapes in response to selective pressures.

    View details for DOI 10.1261/rna.080039.124

    View details for PubMedID 39362695

  • Prediction and functional interpretation of inter-chromosomal genome architecture from DNA sequence with TwinC. bioRxiv : the preprint server for biology Jha, A., Hristov, B., Wang, X., Wang, S., Greenleaf, W. J., Kundaje, A., Aiden, E. L., Bertero, A., Noble, W. S. 2024

    Abstract

    Three-dimensional nuclear DNA architecture comprises well-studied intra-chromosomal (cis) folding and less characterized inter-chromosomal (trans) interfaces. Current predictive models of 3D genome folding can effectively infer pairwise cis-chromatin interactions from the primary DNA sequence but generally ignore trans contacts. There is an unmet need for robust models of trans-genome organization that provide insights into their underlying principles and functional relevance. We present TwinC, an interpretable convolutional neural network model that reliably predicts trans contacts measurable through genome-wide chromatin conformation capture (Hi-C). TwinC uses a paired sequence design from replicate Hi-C experiments to learn single base pair relevance in trans interactions across two stretches of DNA. The method achieves high predictive accuracy (AUROC=0.80) on a cross-chromosomal test set from Hi-C experiments in heart tissue. Mechanistically, the neural network learns the importance of compartments, chromatin accessibility, clustered transcription factor binding and G-quadruplexes in forming trans contacts. In summary, TwinC models and interprets trans genome architecture, shedding light on this poorly understood aspect of gene regulation.

    View details for DOI 10.1101/2024.09.16.613355

    View details for PubMedID 39345598

    View details for PubMedCentralID PMC11429679

  • Single-cell chromatin accessibility reveals malignant regulatory programs in primary human cancers. Science (New York, N.Y.) Sundaram, L., Kumar, A., Zatzman, M., Salcedo, A., Ravindra, N., Shams, S., Louie, B. H., Bagdatli, S. T., Myers, M. A., Sarmashghi, S., Choi, H. Y., Choi, W. Y., Yost, K. E., Zhao, Y., Granja, J. M., Hinoue, T., Hayes, D. N., Cherniack, A., Felau, I., Choudhry, H., Zenklusen, J. C., Farh, K. K., McPherson, A., Curtis, C., Laird, P. W., Corces, M. R., Chang, H. Y., Greenleaf, W. J., Demchok, J. A., Yang, L., Tarnuzzer, R., Caesar-Johnson, S. J., Wang, Z., Doane, A. S., Khurana, E., Castro, M. A., Lazar, A. J., Broom, B. M., Weinstein, J. N., Akbani, R., Kumar, S. V., Raphael, B. J., Wong, C. K., Stuart, J. M., Safavi, R., Benz, C. C., Johnson, B. K., Kyi, C., Shen, H. 2024; 385 (6713): eadk9217

    Abstract

    To identify cancer-associated gene regulatory changes, we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones, yet underlying cis-regulatory landscapes retain cancer type-specific features. Using organ-matched healthy tissues, we identified the "nearest healthy" cell types in diverse cancers, demonstrating that the chromatin signature of basal-like-subtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, suggesting that dispersed, nonrecurrent, noncoding mutations in cancer are functional. Overall, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation.

    View details for DOI 10.1126/science.adk9217

    View details for PubMedID 39236169

  • Terminal deoxynucleotidyl transferase and CD84 identify human multi-potent lymphoid progenitors. Nature communications Kim, Y., Calderon, A. A., Favaro, P., Glass, D. R., Tsai, A. G., Ho, D., Borges, L., Greenleaf, W. J., Bendall, S. C. 2024; 15 (1): 5910

    Abstract

    Lymphoid specification in human hematopoietic progenitors is not fully understood. To better associate lymphoid identity with protein-level cell features, we conduct a highly multiplexed single-cell proteomic screen on human bone marrow progenitors. This screen identifies terminal deoxynucleotidyl transferase (TdT), a specialized DNA polymerase intrinsic to VDJ recombination, broadly expressed within CD34+ progenitors prior to B/T cell emergence. While these TdT+ cells coincide with granulocyte-monocyte progenitor (GMP) immunophenotype, their accessible chromatin regions show enrichment for lymphoid-associated transcription factor (TF) motifs. TdT expression on GMPs is inversely related to the SLAM family member CD84. Prospective isolation of CD84lo GMPs demonstrates robust lymphoid potentials ex vivo, while still retaining significant myeloid differentiation capacity, akin to LMPPs. This multi-omic study identifies human bone marrow lymphoid-primed progenitors, further defining the lympho-myeloid axis in human hematopoiesis.

    View details for DOI 10.1038/s41467-024-49883-w

    View details for PubMedID 39003273

  • An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome. bioRxiv : the preprint server for biology Marinov, G. K., Ramalingam, V., Greenleaf, W. J., Kundaje, A. 2024

    Abstract

    In most eukaryotes, mitochondrial organelles contain their own genome, usually circular, which is the remnant of the genome of the ancestral bacterial endosymbiont that gave rise to modern mitochondria. Mitochondrial genomes are dramatically reduced in their gene content due to the process of endosymbiotic gene transfer to the nucleus; as a result most mitochondrial proteins are encoded in the nucleus and imported into mitochondria. This includes the components of the dedicated mitochondrial transcription and replication systems and regulatory factors, which are entirely distinct from the information processing systems in the nucleus. However, since the 1990s several nuclear transcription factors have been reported to act in mitochondria, and previously we identified 8 human and 3 mouse transcription factors (TFs) with strong localized enrichment over the mitochondrial genome using ChIP-seq (Chromatin Immunoprecipitation) datasets from the second phase of the ENCODE (Encyclopedia of DNA Elements) Project Consortium. Here, we analyze the greatly expanded in the intervening decade ENCODE compendium of TF ChIP-seq datasets (a total of 6,153 ChIP experiments for 942 proteins, of which 763 are sequence-specific TFs) combined with interpretative deep learning models of TF occupancy to create a comprehensive compendium of nuclear TFs that show evidence of association with the mitochondrial genome. We find some evidence for chrM occupancy for 50 nuclear TFs and two other proteins, with bZIP TFs emerging as most likely to be playing a role in mitochondria. However, we also observe that in cases where the same TF has been assayed with multiple antibodies and ChIP protocols, evidence for its chrM occupancy is not always reproducible. In the light of these findings, we discuss the evidential criteria for establishing chrM occupancy and reevaluate the overall compendium of putative mitochondrial-acting nuclear TFs.

    View details for DOI 10.1101/2024.06.04.597442

    View details for PubMedID 38895386

    View details for PubMedCentralID PMC11185660

  • Publisher Correction: PU.1 and BCL11B sequentially cooperate with RUNX1 to anchor mSWI/SNF to poise the T cell effector landscape. Nature immunology Gamble, N., Bradu, A., Caldwell, J. A., McKeever, J., Bolonduro, O., Ermis, E., Kaiser, C., Kim, Y., Parks, B., Klemm, S., Greenleaf, W. J., Crabtree, G. R., Koh, A. S. 2024

    View details for DOI 10.1038/s41590-024-01864-3

    View details for PubMedID 38755325

  • The killifish germline regulates longevity and somatic repair in a sex-specific manner. Nature aging Moses, E., Atlan, T., Sun, X., Franěk, R., Siddiqui, A., Marinov, G. K., Shifman, S., Zucker, D. M., Oron-Gottesman, A., Greenleaf, W. J., Cohen, E., Ram, O., Harel, I. 2024

    Abstract

    Classical evolutionary theories propose tradeoffs among reproduction, damage repair and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. In this study, we used the turquoise killifish (Nothobranchius furzeri) to genetically arrest germline development at discrete stages and examine how different modes of infertility impact life history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. We show here that germline depletion-but not arresting germline differentiation-enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted Caenorhabditis elegans. Our results, therefore, demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.

    View details for DOI 10.1038/s43587-024-00632-0

    View details for PubMedID 38750187

    View details for PubMedCentralID 6276058

  • Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome. Genome biology Marinov, G. K., Chen, X., Swaffer, M. P., Xiang, T., Grossman, A. R., Greenleaf, W. J. 2024; 25 (1): 115

    Abstract

    In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties are originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools.In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays.Our results provide the first window into the 5-hmU and chromatin accessibility landscapes in dinoflagellates.

    View details for DOI 10.1186/s13059-024-03261-3

    View details for PubMedID 38711126

    View details for PubMedCentralID PMC11071213

  • PU.1 and BCL11B sequentially cooperate with RUNX1 to anchor mSWI/SNF to poise the T cell effector landscape. Nature immunology Gamble, N., Bradu, A., Caldwell, J. A., McKeever, J., Bolonduro, O., Ermis, E., Kaiser, C., Kim, Y., Parks, B., Klemm, S., Greenleaf, W. J., Crabtree, G. R., Koh, A. S. 2024

    Abstract

    Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.

    View details for DOI 10.1038/s41590-024-01807-y

    View details for PubMedID 38632339

  • Multicenter integrated analysis of noncoding CRISPRi screens. Nature methods Yao, D., Tycko, J., Oh, J. W., Bounds, L. R., Gosai, S. J., Lataniotis, L., Mackay-Smith, A., Doughty, B. R., Gabdank, I., Schmidt, H., Guerrero-Altamirano, T., Siklenka, K., Guo, K., White, A. D., Youngworth, I., Andreeva, K., Ren, X., Barrera, A., Luo, Y., Yardımcı, G. G., Tewhey, R., Kundaje, A., Greenleaf, W. J., Sabeti, P. C., Leslie, C., Pritykin, Y., Moore, J. E., Beer, M. A., Gersbach, C. A., Reddy, T. E., Shen, Y., Engreitz, J. M., Bassik, M. C., Reilly, S. K. 2024

    Abstract

    The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.

    View details for DOI 10.1038/s41592-024-02216-7

    View details for PubMedID 38504114

    View details for PubMedCentralID 3771521

  • Protocol for mapping the three-dimensional organization of dinoflagellate genomes. STAR protocols Marinov, G. K., Kundaje, A., Greenleaf, W. J., Grossman, A. R. 2024; 5 (2): 102941

    Abstract

    Dinoflagellate genomes often are very large and difficult to assemble, which has until recently precluded their analysis with modern functional genomic tools. Here, we present a protocol for mapping three-dimensional (3D) genome organization in dinoflagellates and using it for scaffolding their genome assemblies. We describe steps for crosslinking, nuclear lysis, denaturation, restriction digest, ligation, and DNA shearing and purification. We then detail procedures sequencing library generation and computational analysis, including initial Hi-C read mapping and 3D-DNA scaffolding/assembly correction. For complete details on the use and execution of this protocol, please refer to Marinov et al.1.

    View details for DOI 10.1016/j.xpro.2024.102941

    View details for PubMedID 38483898

  • Author Correction: Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP). Nature cell biology Jain, S., Pei, L., Spraggins, J. M., Angelo, M., Carson, J. P., Gehlenborg, N., Ginty, F., Goncalves, J. P., Hagood, J. S., Hickey, J. W., Kelleher, N. L., Laurent, L. C., Lin, S., Lin, Y., Liu, H., Naba, A., Nakayasu, E. S., Qian, W., Radtke, A., Robson, P., Stockwell, B. R., Van de Plas, R., Vlachos, I. S., Zhou, M., HuBMAP Consortium, Borner, K., Snyder, M. P., Ahn, K. J., Allen, J., Anderson, D. M., Anderton, C. R., Curcio, C., Angelin, A., Arvanitis, C., Atta, L., Awosika-Olumo, D., Bahmani, A., Bai, H., Balderrama, K., Balzano, L., Bandyopadhyay, G., Bandyopadhyay, S., Bar-Joseph, Z., Barnhart, K., Barwinska, D., Becich, M., Becker, L., Becker, W., Bedi, K., Bendall, S., Benninger, K., Betancur, D., Bettinger, K., Billings, S., Blood, P., Bolin, D., Border, S., Bosse, M., Bramer, L., Brewer, M., Brusko, M., Bueckle, A., Burke, K., Burnum-Johnson, K., Butcher, E., Butterworth, E., Cai, L., Calandrelli, R., Caldwell, M., Campbell-Thompson, M., Cao, D., Cao-Berg, I., Caprioli, R., Caraccio, C., Caron, A., Carroll, M., Chadwick, C., Chen, A., Chen, D., Chen, F., Chen, H., Chen, J., Chen, L., Chen, L., Chiacchia, K., Cho, S., Chou, P., Choy, L., Cisar, C., Clair, G., Clarke, L., Clouthier, K. A., Colley, M. E., Conlon, K., Conroy, J., Contrepois, K., Corbett, A., Corwin, A., Cotter, D., Courtois, E., Cruz, A., Csonka, C., Czupil, K., Daiya, V., Dale, K., Davanagere, S. A., Dayao, M., de Caestecker, M. P., Decker, A., Deems, S., Degnan, D., Desai, T., Deshpande, V., Deutsch, G., Devlin, M., Diep, D., Dodd, C., Donahue, S., Dong, W., Dos Santos Peixoto, R., Duffy, M., Dufresne, M., Duong, T. E., Dutra, J., Eadon, M. T., El-Achkar, T. M., Enninful, A., Eraslan, G., Eshelman, D., Espin-Perez, A., Esplin, E. D., Esselman, A., Falo, L. D., Falo, L., Fan, J., Fan, R., Farrow, M. A., Farzad, N., Favaro, P., Fermin, J., Filiz, F., Filus, S., Fisch, K., Fisher, E., Fisher, S., Flowers, K., Flynn, W. F., Fogo, A. B., Fu, D. A., Fulcher, J., Fung, A., Furst, D., Gallant, M., Gao, F., Gao, Y., Gaulton, K., Gaut, J. P., Gee, J., Ghag, R. R., Ghazanfar, S., Ghose, S., Gisch, D., Gold, I., Gondalia, A., Gorman, B., Greenleaf, W., Greenwald, N., Gregory, B., Guo, R., Gupta, R., Hakimian, H., Haltom, J., Halushka, M., Han, K. S., Hanson, C., Harbury, P., Hardi, J., Harlan, L., Harris, R. C., Hartman, A., Heidari, E., Helfer, J., Helminiak, D., Hemberg, M., Henning, N., Herr, B. W., Ho, J., Holden-Wiltse, J., Hong, S., Hong, Y., Honick, B., Hood, G., Hu, P., Hu, Q., Huang, M., Huyck, H., Imtiaz, T., Isberg, O. G., Itkin, M., Jackson, D., Jacobs, M., Jain, Y., Jewell, D., Jiang, L., Jiang, Z. G., Johnston, S., Joshi, P., Ju, Y., Judd, A., Kagel, A., Kahn, A., Kalavros, N., Kalhor, K., Karagkouni, D., Karathanos, T., Karunamurthy, A., Katari, S., Kates, H., Kaushal, M., Keener, N., Keller, M., Kenney, M., Kern, C., Kharchenko, P., Kim, J., Kingsford, C., Kirwan, J., Kiselev, V., Kishi, J., Kitata, R. B., Knoten, A., Kollar, C., Krishnamoorthy, P., Kruse, A. R., Da, K., Kundaje, A., Kutschera, E., Kwon, Y., Lake, B. B., Lancaster, S., Langlieb, J., Lardenoije, R., Laronda, M., Laskin, J., Lau, K., Lee, H., Lee, M., Lee, M., Strekalova, Y. L., Li, D., Li, J., Li, J., Li, X., Li, Z., Liao, Y., Liaw, T., Lin, P., Lin, Y., Lindsay, S., Liu, C., Liu, Y., Liu, Y., Lott, M., Lotz, M., Lowery, L., Lu, P., Lu, X., Lucarelli, N., Lun, X., Luo, Z., Ma, J., Macosko, E., Mahajan, M., Maier, L., Makowski, D., Malek, M., Manthey, D., Manz, T., Margulies, K., Marioni, J., Martindale, M., Mason, C., Mathews, C., Maye, P., McCallum, C., McDonough, E., McDonough, L., Mcdowell, H., Meads, M., Medina-Serpas, M., Ferreira, R. M., Messinger, J., Metis, K., Migas, L. G., Miller, B., Mimar, S., Minor, B., Misra, R., Missarova, A., Mistretta, C., Moens, R., Moerth, E., Moffitt, J., Molla, G., Monroe, M., Monte, E., Morgan, M., Muraro, D., Murphy, B. R., Murray, E., Musen, M. A., Naglah, A., Nasamran, C., Neelakantan, T., Nevins, S., Nguyen, H., Nguyen, N., Nguyen, T., Nguyen, T., Nigra, D., Nofal, M., Nolan, G., Nwanne, G., O'Connor, M., Okuda, K., Olmer, M., O'Neill, K., Otaluka, N., Pang, M., Parast, M., Pasa-Tolic, L., Paten, B., Patterson, N. H., Peng, T., Phillips, G., Pichavant, M., Piehowski, P., Pilner, H., Pingry, E., Pita-Juarez, Y., Plevritis, S., Ploumakis, A., Pouch, A., Pryhuber, G., Puerto, J., Qaurooni, D., Qin, L., Quardokus, E. M., Rajbhandari, P., Rakow-Penner, R., Ramasamy, R., Read, D., Record, E. G., Reeves, D., Ricarte, A., Rodriguez-Soto, A., Ropelewski, A., Rosario, J., Roselkis, M., Rowe, D., Roy, T. K., Ruffalo, M., Ruschman, N., Sabo, A., Sachdev, N., Saka, S., Salamon, D., Sarder, P., Sasaki, H., Satija, R., Saunders, D., Sawka, R., Schey, K., Schlehlein, H., Scholten, D., Schultz, S., Schwartz, L., Schwenk, M., Scibek, R., Segre, A., Serrata, M., Shands, W., Shen, X., Shendure, J., Shephard, H., Shi, L., Shi, T., Shin, D., Shirey, B., Sibilla, M., Silber, M., Silverstein, J., Simmel, D., Simmons, A., Singhal, D., Sivajothi, S., Smits, T., Soncin, F., Song, Q., Stanley, V., Stuart, T., Su, H., Su, P., Sun, X., Surrette, C., Swahn, H., Tan, K., Teichmann, S., Tejomay, A., Tellides, G., Thomas, K., Thomas, T., Thompson, M., Tian, H., Tideman, L., Trapnell, C., Tsai, A. G., Tsai, C., Tsai, L., Tsui, E., Tsui, T., Tung, J., Turner, M., Uranic, J., Vaishnav, E. D., Varra, S. R., Vaskivskyi, V., Velickovic, D., Velickovic, M., Verheyden, J., Waldrip, J., Wallace, D., Wan, X., Wang, A., Wang, F., Wang, M., Wang, S., Wang, X., Wasserfall, C., Wayne, L., Webber, J., Weber, G. M., Wei, B., Wei, J., Weimer, A., Welling, J., Wen, X., Wen, Z., Williams, M., Winfree, S., Winograd, N., Woodard, A., Wright, D., Wu, F., Wu, P., Wu, Q., Wu, X., Xing, Y., Xu, T., Yang, M., Yang, M., Yap, J., Ye, D. H., Yin, P., Yuan, Z., Yun, C. J., Zahraei, A., Zemaitis, K., Zhang, B., Zhang, C., Zhang, C., Zhang, C., Zhang, K., Zhang, S., Zhang, T., Zhang, Y., Zhao, B., Zhao, W., Zheng, J. W., Zhong, S., Zhu, B., Zhu, C., Zhu, D., Zhu, Q., Zhu, Y. 2024

    View details for DOI 10.1038/s41556-024-01384-0

    View details for PubMedID 38429479

  • Single-molecule chromatin configurations link transcription factor binding to expression in human cells. bioRxiv : the preprint server for biology Doughty, B. R., Hinks, M. M., Schaepe, J. M., Marinov, G. K., Thurm, A. R., Rios-Martinez, C., Parks, B. E., Tan, Y., Marklund, E., Dubocanin, D., Bintu, L., Greenleaf, W. J. 2024

    Abstract

    The binding of multiple transcription factors (TFs) to genomic enhancers activates gene expression in mammalian cells. However, the molecular details that link enhancer sequence to TF binding, promoter state, and gene expression levels remain opaque. We applied single-molecule footprinting (SMF) to measure the simultaneous occupancy of TFs, nucleosomes, and components of the transcription machinery on engineered enhancer/promoter constructs with variable numbers of TF binding sites for both a synthetic and an endogenous TF. We find that activation domains enhance a TF's capacity to compete with nucleosomes for binding to DNA in a BAF-dependent manner, TF binding on nucleosome-free DNA is consistent with independent binding between TFs, and average TF occupancy linearly contributes to promoter activation rates. We also decompose TF strength into separable binding and activation terms, which can be tuned and perturbed independently. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the binding microstates observed at the enhancer and subsequent time-dependent gene expression. This work provides a template for quantitative dissection of distinct contributors to gene activation, including the activity of chromatin remodelers, TF activation domains, chromatin acetylation, TF concentration, TF binding affinity, and TF binding site configuration.

    View details for DOI 10.1101/2024.02.02.578660

    View details for PubMedID 38352517

  • Compact RNA sensors for increasingly complex functions of multiple inputs. bioRxiv : the preprint server for biology Choe, C., Andreasson, J. O., Melaine, F., Kladwang, W., Wu, M. J., Portela, F., Wellington-Oguri, R., Nicol, J. J., Wayment-Steele, H. K., Gotrik, M., Participants, E., Khatri, P., Greenleaf, W. J., Das, R. 2024

    Abstract

    Designing single molecules that compute general functions of input molecular partners represents a major unsolved challenge in molecular design. Here, we demonstrate that high-throughput, iterative experimental testing of diverse RNA designs crowdsourced from Eterna yields sensors of increasingly complex functions of input oligonucleotide concentrations. After designing single-input RNA sensors with activation ratios beyond our detection limits, we created logic gates, including challenging XOR and XNOR gates, and sensors that respond to the ratio of two inputs. Finally, we describe the OpenTB challenge, which elicited 85-nucleotide sensors that compute a score for diagnosing active tuberculosis, based on the ratio of products of three gene segments. Building on OpenTB design strategies, we created an algorithm Nucleologic that produces similarly compact sensors for the three-gene score based on RNA and DNA. These results open new avenues for diverse applications of compact, single molecule sensors previously limited by design complexity.

    View details for DOI 10.1101/2024.01.04.572289

    View details for PubMedID 38260323

    View details for PubMedCentralID PMC10802310

  • Detection and analysis of complex structural variation in human genomes across populations and in brains of donors with psychiatric disorders Cell Zhou, B., Arthur, J. G., Guo, H., et al 2024; Published online September 30, 2024
  • An encyclopedia of enhancer-gene regulatory interactions in the human genome. bioRxiv : the preprint server for biology Gschwind, A. R., Mualim, K. S., Karbalayghareh, A., Sheth, M. U., Dey, K. K., Jagoda, E., Nurtdinov, R. N., Xi, W., Tan, A. S., Jones, H., Ma, X. R., Yao, D., Nasser, J., Avsec, Ž., James, B. T., Shamim, M. S., Durand, N. C., Rao, S. S., Mahajan, R., Doughty, B. R., Andreeva, K., Ulirsch, J. C., Fan, K., Perez, E. M., Nguyen, T. C., Kelley, D. R., Finucane, H. K., Moore, J. E., Weng, Z., Kellis, M., Bassik, M. C., Price, A. L., Beer, M. A., Guigó, R., Stamatoyannopoulos, J. A., Lieberman Aiden, E., Greenleaf, W. J., Leslie, C. S., Steinmetz, L. M., Kundaje, A., Engreitz, J. M. 2023

    Abstract

    Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease1-6. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and largescale genetic perturbations generated by the ENCODE Consortium7. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 elementgene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancerpromoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.

    View details for DOI 10.1101/2023.11.09.563812

    View details for PubMedID 38014075

    View details for PubMedCentralID PMC10680627

  • The chromatin landscape of the euryarchaeon Haloferax volcanii. Genome biology Marinov, G. K., Bagdatli, S. T., Wu, T., He, C., Kundaje, A., Greenleaf, W. J. 2023; 24 (1): 253

    Abstract

    BACKGROUND: Archaea, together with Bacteria, represent the two main divisions of life on Earth, with many of the defining characteristics of the more complex eukaryotes tracing their origin to evolutionary innovations first made in their archaeal ancestors. One of the most notable such features is nucleosomal chromatin, although archaeal histones and chromatin differ significantly from those of eukaryotes, not all archaea possess histones and it is not clear if histones are a main packaging component for all that do. Despite increased interest in archaeal chromatin in recent years, its properties have been little studied using genomic tools.RESULTS: Here, we adapt the ATAC-seq assay to archaea and use it to map the accessible landscape of the genome of the euryarchaeote Haloferax volcanii. We integrate the resulting datasets with genome-wide maps of active transcription and single-stranded DNA (ssDNA) and find that while H. volcanii promoters exist in a preferentially accessible state, unlike most eukaryotes, modulation of transcriptional activity is not associated with changes in promoter accessibility. Applying orthogonal single-molecule footprinting methods, we quantify the absolute levels of physical protection of H. volcanii and find that Haloferax chromatin is similarly or only slightly more accessible, in aggregate, than that of eukaryotes. We also evaluate the degree of coordination of transcription within archaeal operons and make the unexpected observation that some CRISPR arrays are associated with highly prevalent ssDNA structures.CONCLUSIONS: Our results provide the first comprehensive maps of chromatin accessibility and active transcription in Haloferax across conditions and thus a foundation for future functional studies of archaeal chromatin.

    View details for DOI 10.1186/s13059-023-03095-5

    View details for PubMedID 37932847

  • The landscape of the histone-organized chromatin of Bdellovibrionota bacteria. bioRxiv : the preprint server for biology Marinov, G. K., Doughty, B., Kundaje, A., Greenleaf, W. J. 2023

    Abstract

    Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a Bacteriovorax strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, Bacteriovorax chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in Bacteriovorax positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, Bacteriovorax promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the Bacteriovorax genome exists in a three-dimensional (3D) configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.

    View details for DOI 10.1101/2023.10.30.564843

    View details for PubMedID 37961278

    View details for PubMedCentralID PMC10634947

  • RNA polymerase II dynamics and mRNA stability feedback scale mRNA amounts with cell size. Cell Swaffer, M. P., Marinov, G. K., Zheng, H., Fuentes Valenzuela, L., Tsui, C. Y., Jones, A. W., Greenwood, J., Kundaje, A., Greenleaf, W. J., Reyes-Lamothe, R., Skotheim, J. M. 2023

    Abstract

    A fundamental feature of cellular growth is that total protein and RNA amounts increase with cell size to keep concentrations approximately constant. A key component of this is that global transcription rates increase in larger cells. Here, we identify RNA polymerase II (RNAPII) as the limiting factor scaling mRNA transcription with cell size in budding yeast, as transcription is highly sensitive to the dosage of RNAPII but not to other components of the transcriptional machinery. Our experiments support a dynamic equilibrium model where global RNAPII transcription at a given size is set by the mass action recruitment kinetics of unengaged nucleoplasmic RNAPII to the genome. However, this only drives a sub-linear increase in transcription with size, which is then partially compensated for by a decrease in mRNA decay rates as cells enlarge. Thus, limiting RNAPII and feedback on mRNA stability work in concert to scale mRNA amounts with cell size.

    View details for DOI 10.1016/j.cell.2023.10.012

    View details for PubMedID 37944513

  • Single-cell chromatin state transitions during epigenetic memory formation. bioRxiv : the preprint server for biology Fujimori, T., Rios-Martinez, C., Thurm, A. R., Hinks, M. M., Doughty, B. R., Sinha, J., Le, D., Hafner, A., Greenleaf, W. J., Boettiger, A. N., Bintu, L. 2023

    Abstract

    Repressive chromatin modifications are thought to compact chromatin to silence transcription. However, it is unclear how chromatin structure changes during silencing and epigenetic memory formation. We measured gene expression and chromatin structure in single cells after recruitment and release of repressors at a reporter gene. Chromatin structure is heterogeneous, with open and compact conformations present in both active and silent states. Recruitment of repressors associated with epigenetic memory produces chromatin compaction across 10-20 kilobases, while reversible silencing does not cause compaction at this scale. Chromatin compaction is inherited, but changes molecularly over time from histone methylation (H3K9me3) to DNA methylation. The level of compaction at the end of silencing quantitatively predicts epigenetic memory weeks later. Similarly, chromatin compaction at the Nanog locus predicts the degree of stem-cell fate commitment. These findings suggest that the chromatin state across tens of kilobases, beyond the gene itself, is important for epigenetic memory formation.

    View details for DOI 10.1101/2023.10.03.560616

    View details for PubMedID 37873344

    View details for PubMedCentralID PMC10592931

  • Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions. Nature communications Limouse, C., Smith, O. K., Jukam, D., Fryer, K. A., Greenleaf, W. J., Straight, A. F. 2023; 14 (1): 6073

    Abstract

    Non-coding RNAs (ncRNAs) are transcribed throughout the genome and provide regulatory inputs to gene expression through their interaction with chromatin. Yet, the genomic targets and functions of most ncRNAs are unknown. Here we use chromatin-associated RNA sequencing (ChAR-seq) to map the global network of ncRNA interactions with chromatin in human embryonic stem cells and the dynamic changes in interactions during differentiation into definitive endoderm. We uncover general principles governing the organization of the RNA-chromatin interactome, demonstrating that nearly all ncRNAs exclusively interact with genes in close three-dimensional proximity to their locus and provide a model predicting the interactome. We uncover RNAs that interact with many loci across the genome and unveil thousands of unannotated RNAs that dynamically interact with chromatin. By relating the dynamics of the interactome to changes in gene expression, we demonstrate that activation or repression of individual genes is unlikely to be controlled by a single ncRNA.

    View details for DOI 10.1038/s41467-023-41848-9

    View details for PubMedID 37770513

    View details for PubMedCentralID 4177037

  • Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science (New York, N.Y.) Horton, C. A., Alexandari, A. M., Hayes, M. G., Marklund, E., Schaepe, J. M., Aditham, A. K., Shah, N., Suzuki, P. H., Shrikumar, A., Afek, A., Greenleaf, W. J., Gordân, R., Zeitlinger, J., Kundaje, A., Fordyce, P. M. 2023; 381 (6664): eadd1250

    Abstract

    Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.

    View details for DOI 10.1126/science.add1250

    View details for PubMedID 37733848

  • Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome. bioRxiv : the preprint server for biology Marinov, G. K., Chen, X., Swaffer, M. P., Xiang, T., Grossman, A. R., Greenleaf, W. J. 2023

    Abstract

    In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties were originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays.

    View details for DOI 10.1101/2023.09.18.558303

    View details for PubMedID 37781619

    View details for PubMedCentralID PMC10541103

  • Integration of spatial and single-cell data across modalities with weakly linked features. Nature biotechnology Chen, S., Zhu, B., Huang, S., Hickey, J. W., Lin, K. Z., Snyder, M., Greenleaf, W. J., Nolan, G. P., Zhang, N. R., Ma, Z. 2023

    Abstract

    Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori 'linked' features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section.

    View details for DOI 10.1038/s41587-023-01935-0

    View details for PubMedID 37679544

    View details for PubMedCentralID 5669064

  • Systematic benchmarking of single-cell ATAC-sequencing protocols. Nature biotechnology De Rop, F. V., Hulselmans, G., Flerin, C., Soler-Vila, P., Rafels, A., Christiaens, V., González-Blas, C. B., Marchese, D., Caratù, G., Poovathingal, S., Rozenblatt-Rosen, O., Slyper, M., Luo, W., Muus, C., Duarte, F., Shrestha, R., Bagdatli, S. T., Corces, M. R., Mamanova, L., Knights, A., Meyer, K. B., Mulqueen, R., Taherinasab, A., Maschmeyer, P., Pezoldt, J., Lambert, C. L., Iglesias, M., Najle, S. R., Dossani, Z. Y., Martelotto, L. G., Burkett, Z., Lebofsky, R., Martin-Subero, J. I., Pillai, S., Sebé-Pedrós, A., Deplancke, B., Teichmann, S. A., Ludwig, L. S., Braun, T. P., Adey, A. C., Greenleaf, W. J., Buenrostro, J. D., Regev, A., Aerts, S., Heyn, H. 2023

    Abstract

    Single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) has emerged as a powerful tool for dissecting regulatory landscapes and cellular heterogeneity. However, an exploration of systemic biases among scATAC-seq technologies has remained absent. In this study, we benchmark the performance of eight scATAC-seq methods across 47 experiments using human peripheral blood mononuclear cells (PBMCs) as a reference sample and develop PUMATAC, a universal preprocessing pipeline, to handle the various sequencing data formats. Our analyses reveal significant differences in sequencing library complexity and tagmentation specificity, which impact cell-type annotation, genotype demultiplexing, peak calling, differential region accessibility and transcription factor motif enrichment. Our findings underscore the importance of sample extraction, method selection, data processing and total cost of experiments, offering valuable guidance for future research. Finally, our data and analysis pipeline encompasses 169,000 PBMC scATAC-seq profiles and a best practices code repository for scATAC-seq data analysis, which are freely available to extend this benchmarking effort to future protocols.

    View details for DOI 10.1038/s41587-023-01881-x

    View details for PubMedID 37537502

    View details for PubMedCentralID 7212672

  • Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nature genetics Ober-Reynolds, B., Wang, C., Ko, J. M., Rios, E. J., Aasi, S. Z., Davis, M. M., Oro, A. E., Greenleaf, W. J. 2023

    Abstract

    Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50-100% more enhancer-gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.

    View details for DOI 10.1038/s41588-023-01445-4

    View details for PubMedID 37500727

    View details for PubMedCentralID 4006068

  • Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP). Nature cell biology Jain, S., Pei, L., Spraggins, J. M., Angelo, M., Carson, J. P., Gehlenborg, N., Ginty, F., Gonçalves, J. P., Hagood, J. S., Hickey, J. W., Kelleher, N. L., Laurent, L. C., Lin, S., Lin, Y., Liu, H., Naba, A., Nakayasu, E. S., Qian, W. J., Radtke, A., Robson, P., Stockwell, B. R., Van de Plas, R., Vlachos, I. S., Zhou, M., Börner, K., Snyder, M. P. 2023

    Abstract

    The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.

    View details for DOI 10.1038/s41556-023-01194-w

    View details for PubMedID 37468756

    View details for PubMedCentralID 8238499

  • Organization of the human intestine at single-cell resolution. Nature Hickey, J. W., Becker, W. R., Nevins, S. A., Horning, A., Perez, A. E., Zhu, C., Zhu, B., Wei, B., Chiu, R., Chen, D. C., Cotter, D. L., Esplin, E. D., Weimer, A. K., Caraccio, C., Venkataraaman, V., Schürch, C. M., Black, S., Brbić, M., Cao, K., Chen, S., Zhang, W., Monte, E., Zhang, N. R., Ma, Z., Leskovec, J., Zhang, Z., Lin, S., Longacre, T., Plevritis, S. K., Lin, Y., Nolan, G. P., Greenleaf, W. J., Snyder, M. 2023; 619 (7970): 572-584

    Abstract

    The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.

    View details for DOI 10.1038/s41586-023-05915-x

    View details for PubMedID 37468586

    View details for PubMedCentralID PMC10356619

  • Human Immune Cell Epigenomic Signatures in Response to Infectious Diseases and Chemical Exposures. bioRxiv : the preprint server for biology Wang, W., Hariharan, M., Bartlett, A., Barragan, C., Castanon, R., Rothenberg, V., Song, H., Nery, J., Aldridge, A., Altshul, J., Kenworthy, M., Ding, W., Liu, H., Tian, W., Zhou, J., Chen, H., Wei, B., Gündüz, I. B., Norell, T., Broderick, T. J., McClain, M. T., Satterwhite, L. L., Burke, T. W., Petzold, E. A., Shen, X., Woods, C. W., Fowler, V. G., Ruffin, F., Panuwet, P., Barr, D. B., Beare, J. L., Smith, A. K., Spurbeck, R. R., Vangeti, S., Ramos, I., Nudelman, G., Sealfon, S. C., Castellino, F., Walley, A. M., Evans, T., Müller, F., Greenleaf, W. J., Ecker, J. R. 2023

    Abstract

    Variations in DNA methylation patterns in human tissues have been linked to various environmental exposures and infections. Here, we identified the DNA methylation signatures associated with multiple exposures in nine major immune cell types derived from peripheral blood mononuclear cells (PBMCs) at single-cell resolution. We performed methylome sequencing on 111,180 immune cells obtained from 112 individuals who were exposed to different viruses, bacteria, or chemicals. Our analysis revealed 790,662 differentially methylated regions (DMRs) associated with these exposures, which are mostly individual CpG sites. Additionally, we integrated methylation and ATAC-seq data from same samples and found strong correlations between the two modalities. However, the epigenomic remodeling in these two modalities are complementary. Finally, we identified the minimum set of DMRs that can predict exposures. Overall, our study provides the first comprehensive dataset of single immune cell methylation profiles, along with unique methylation biomarkers for various biological and chemical exposures.

    View details for DOI 10.1101/2023.06.29.546792

    View details for PubMedID 37425926

    View details for PubMedCentralID PMC10327221

  • Discovery of Key Transcriptional Regulators of Alloantigen-Inducible Tregs Used for Cell Therapy Cepika, A., Amaya, L., Waichler, C., Narula, M., Thomas, B. C., Chen, P. P., Mantilla, M. M., Pavel-Dinu, M., Freeborn, R., Porteus, M. H., Bacchetta, R., Mueller, F., Greenleaf, W. J., Chang, H. Y., Roncarolo, M. CELL PRESS. 2023: 370-371
  • Single-cell transcriptomic landscape of the developing human spinal cord. Nature neuroscience Andersen, J., Thom, N., Shadrach, J. L., Chen, X., Onesto, M. M., Amin, N. D., Yoon, S. J., Li, L., Greenleaf, W. J., Müller, F., Pașca, A. M., Kaltschmidt, J. A., Pașca, S. P. 2023

    Abstract

    Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.

    View details for DOI 10.1038/s41593-023-01311-w

    View details for PubMedID 37095394

    View details for PubMedCentralID 8353162

  • CasKAS: direct profiling of genome-wide dCas9 and Cas9 specificity using ssDNA mapping. Genome biology Marinov, G. K., Kim, S. H., Bagdatli, S. T., Higashino, S. I., Trevino, A. E., Tycko, J., Wu, T., Bintu, L., Bassik, M. C., He, C., Kundaje, A., Greenleaf, W. J. 2023; 24 (1): 85

    Abstract

    Detecting and mitigating off-target activity is critical to the practical application of CRISPR-mediated genome and epigenome editing. While numerous methods have been developed to map Cas9 binding specificity genome-wide, they are generally time-consuming and/or expensive, and not applicable to catalytically dead CRISPR enzymes. We have developed CasKAS, a rapid, inexpensive, and facile assay for identifying off-target CRISPR enzyme binding and cleavage by chemically mapping the unwound single-stranded DNA structures formed upon binding of a sgRNA-loaded Cas9 protein. We demonstrate this method in both in vitro and in vivo contexts.

    View details for DOI 10.1186/s13059-023-02930-z

    View details for PubMedID 37085898

    View details for PubMedCentralID PMC10120127

  • Systems biology approaches to unravel lymphocyte subsets and function. Current opinion in immunology Kim, Y., Greenleaf, W. J., Bendall, S. C. 2023; 82: 102323

    Abstract

    Single-cell technologies have revealed the extensive heterogeneity and complexity of the immune system. Systems biology approaches in immunology have taken advantage of the high-parameter, high-throughput data and analyzed immune cell types in a 'bottom-up' data-driven method. This approach has discovered previously unrecognized cell types and functions. Especially for human immunology, in which experimental manipulations are challenging, systems approach has become a successful means to investigate physiologically relevant contexts. This review focuses on the recent findings in lymphocyte biology, from their development, differentiation into subsets, and heterogeneity in their functions, enabled by these systems approaches. Furthermore, we review examples of the application of findings from systems approach studies and discuss how now to leave the rich dataset in the curse of high dimensionality.

    View details for DOI 10.1016/j.coi.2023.102323

    View details for PubMedID 37028221

  • Multifaceted role for p53 in pancreatic cancer suppression. Proceedings of the National Academy of Sciences of the United States of America Mello, S. S., Flowers, B. M., Mazur, P. K., Lee, J. J., Müller, F., Denny, S. K., Ferreira, S., Hanson, K., Kim, S. K., Greenleaf, W. J., Wood, L. D., Attardi, L. D. 2023; 120 (10): e2211937120

    Abstract

    The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53's critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC.

    View details for DOI 10.1073/pnas.2211937120

    View details for PubMedID 36848578

  • Building a quantitative and predictive model of 5 ' SS selection by human U1 snRNP using RNA-map White, D. S., Carrocci, T. J., Shin, J., Lin, C., Black, D. L., Greenleaf, W., Herschlag, D., Hoskins, A. A. CELL PRESS. 2023: 219A
  • Building a quantitative and predictive model of 5'SS selection by human U1 snRNP using RNA-map. Biophysical journal White, D. S., Carrocci, T. J., Shin, J., Lin, C., Black, D. L., Greenleaf, W., Herschlag, D., Hoskins, A. A. 2023; 122 (3S1): 219a

    View details for DOI 10.1016/j.bpj.2022.11.1303

    View details for PubMedID 36783069

  • Malaria-driven expansion of adaptive-like functional CD56-negative NK cells correlates with clinical immunity to malaria. Science translational medicine Ty, M., Sun, S., Callaway, P. C., Rek, J., Press, K. D., van der Ploeg, K., Nideffer, J., Hu, Z., Klemm, S., Greenleaf, W., Donato, M., Tukwasibwe, S., Arinaitwe, E., Nankya, F., Musinguzi, K., Andrew, D., de la Parte, L., Mori, D. M., Lewis, S. N., Takahashi, S., Rodriguez-Barraquer, I., Greenhouse, B., Blish, C., Utz, P. J., Khatri, P., Dorsey, G., Kamya, M., Boyle, M., Feeney, M., Ssewanyana, I., Jagannathan, P. 2023; 15 (680): eadd9012

    Abstract

    Natural killer (NK) cells likely play an important role in immunity to malaria, but the effect of repeated malaria on NK cell responses remains unclear. Here, we comprehensively profiled the NK cell response in a cohort of 264 Ugandan children. Repeated malaria exposure was associated with expansion of an atypical, CD56neg population of NK cells that differed transcriptionally, epigenetically, and phenotypically from CD56dim NK cells, including decreased expression of PLZF and the Fc receptor γ-chain, increased histone methylation, and increased protein expression of LAG-3, KIR, and LILRB1. CD56neg NK cells were highly functional and displayed greater antibody-dependent cellular cytotoxicity than CD56dim NK cells. Higher frequencies of CD56neg NK cells were associated with protection against symptomatic malaria and high parasite densities. After marked reductions in malaria transmission, frequencies of these cells rapidly declined, suggesting that continuous exposure to Plasmodium falciparum is required to maintain this modified, adaptive-like NK cell subset.

    View details for DOI 10.1126/scitranslmed.add9012

    View details for PubMedID 36696483

  • High-throughput biochemistry in RNA sequence space: predicting structure and function. Nature reviews. Genetics Marklund, E., Ke, Y., Greenleaf, W. J. 2023

    Abstract

    RNAs are central to fundamental biological processes in all known organisms. The set of possible intramolecular interactions of RNA nucleotides defines the range of alternative structural conformations of a specific RNA that can coexist, and these structures enable functional catalytic properties of RNAs and/or their productive intermolecular interactions with other RNAs or proteins. However, the immense combinatorial space of potential RNA sequences has precluded predictive mapping between RNA sequence and molecular structure and function. Recent advances in high-throughput approaches in vitro have enabled quantitative thermodynamic and kinetic measurements of RNA-RNA and RNA-protein interactions, across hundreds of thousands of sequence variations. In this Review, we explore these techniques, how they can be used to understand RNA function and how they might form the foundations of an accurate model to predict the structure and function of an RNA directly from its nucleotide sequence. The experimental techniques and modelling frameworks discussed here are also highly relevant for the sampling of sequence-structure-function space of DNAs and proteins.

    View details for DOI 10.1038/s41576-022-00567-5

    View details for PubMedID 36635406

  • Statins improve endothelial function via suppression of epigenetic-driven EndMT Nature Cardiovascular Research Liu, C., Shen, M., Tan, W. L., Chen, I. Y., Liu, Y., Yu, X., Zhang, A., Liu, Y., Zhao, M., Ameen, M., Zhang, M., Gross, E. R., Lei, Q. S., Sayed, N., Wu, J. C. 2023
  • Chromatin Accessibility Methods and Protocols Preface CHROMATIN ACCESSIBILITY Marinov, G. K., Greenleaf, W. J., Marinov, G. K., Greenleaf, W. J. 2023; 2611: V
  • Current and future perspectives of single-cell multi-omics technologies in cardiovascular research. Nature cardiovascular research Tan, W. L., Seow, W. Q., Zhang, A., Rhee, S., Wong, W. H., Greenleaf, W. J., Wu, J. C. 2023; 2 (1): 20-34

    Abstract

    Single-cell technology has become an indispensable tool in cardiovascular research since its first introduction in 2009. Here, we highlight the recent remarkable progress in using single-cell technology to study transcriptomic and epigenetic heterogeneity in cardiac disease and development. We then introduce the key concepts in single-cell multi-omics modalities that apply to cardiovascular research. Lastly, we discuss some of the trending concepts in single-cell technology that are expected to propel cardiovascular research to the next phase of single-cell research.

    View details for DOI 10.1038/s44161-022-00205-7

    View details for PubMedID 39196210

  • Simultaneous Single-Cell Profiling of the Transcriptome and Accessible Chromatin Using SHARE-seq. Methods in molecular biology (Clifton, N.J.) Kim, S. H., Marinov, G. K., Bagdatli, S. T., Higashino, S. I., Shipony, Z., Kundaje, A., Greenleaf, W. J. 2023; 2611: 187-230

    Abstract

    The ability to analyze the transcriptomic and epigenomic states of individual single cells has in recent years transformed our ability to measure and understand biological processes. Recent advancements have focused on increasing sensitivity and throughput to provide richer and deeper biological insights at the cellular level. The next frontier is the development of multiomic methods capable of analyzing multiple features from the same cell, such as the simultaneous measurement of the transcriptome and the chromatin accessibility of candidate regulatory elements. In this chapter, we discuss and describe SHARE-seq (Simultaneous high-throughput ATAC, and RNA expression with sequencing) for carrying out simultaneous chromatin accessibility and transcriptome measurements in single cells, together with the experimental and analytical considerations for achieving optimal results.

    View details for DOI 10.1007/978-1-0716-2899-7_11

    View details for PubMedID 36807070

  • Genome-Wide Mapping of Active Regulatory Elements Using ATAC-seq. Methods in molecular biology (Clifton, N.J.) Marinov, G. K., Shipony, Z., Kundaje, A., Greenleaf, W. J. 2023; 2611: 3-19

    Abstract

    Active cis-regulatory elements (cREs) in eukaryotes are characterized by nucleosomal depletion and, accordingly, higher accessibility. This property has turned out to be immensely useful for identifying cREs genome-wide and tracking their dynamics across different cellular states and is the basis of numerous methods taking advantage of the preferential enzymatic cleavage/labeling of accessible DNA. ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) has emerged as the most versatile and widely adaptable method and has been widely adopted as the standard tool for mapping open chromatin regions. Here, we discuss the current optimal practices and important considerations for carrying out ATAC-seq experiments, primarily in the context of mammalian systems.

    View details for DOI 10.1007/978-1-0716-2899-7_1

    View details for PubMedID 36807060

  • Single-Molecule Mapping of Chromatin Accessibility Using NOMe-seq/dSMF. Methods in molecular biology (Clifton, N.J.) Hinks, M., Marinov, G. K., Kundaje, A., Bintu, L., Greenleaf, W. J. 2023; 2611: 101-119

    Abstract

    The bulk of gene expression regulation in most organisms is accomplished through the action of transcription factors (TFs) on cis-regulatory elements (CREs). In eukaryotes, these CREs are generally characterized by nucleosomal depletion and thus higher physical accessibility of DNA. Many methods exploit this property to map regions of high average accessibility, and thus putative active CREs, in bulk. However, these techniques do not provide information about coordinated patterns of accessibility along the same DNA molecule, nor do they map the absolute levels of occupancy/accessibility. SMF (Single-Molecule Footprinting) fills these gaps by leveraging recombinant DNA cytosine methyltransferases (MTase) to mark accessible locations on individual DNA molecules. In this chapter, we discuss current methods and important considerations for performing SMF experiments.

    View details for DOI 10.1007/978-1-0716-2899-7_8

    View details for PubMedID 36807067

  • Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease. Cell Ameen, M., Sundaram, L., Shen, M., Banerjee, A., Kundu, S., Nair, S., Shcherbina, A., Gu, M., Wilson, K. D., Varadarajan, A., Vadgama, N., Balsubramani, A., Wu, J. C., Engreitz, J. M., Farh, K., Karakikes, I., Wang, K. C., Quertermous, T., Greenleaf, W. J., Kundaje, A. 2022; 185 (26): 4937

    Abstract

    To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we generated single-cell chromatin accessibility maps of human fetal heart tissues. We identified eight major differentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription factor (TF) activity signatures. We contrasted regulatory landscapes of iPSC-derived cardiac cell types and their invivo counterparts, which enabled optimization of invitro differentiation of epicardial cells. Further, we interpreted sequence based deep learning models of cell-type-resolved chromatin accessibility profiles to decipher underlying TF motif lexicons. De novo mutations predicted to affect chromatin accessibility in arterial endothelium were enriched in congenital heart disease (CHD) cases vs. controls. Invitro studies in iPSCs validated the functional impact of identified variation on the predicted developmental cell types. This work thus defines the cell-type-resolved cis-regulatory sequence determinants of heart development and identifies disruption of cell type-specific regulatory elements in CHD.

    View details for DOI 10.1016/j.cell.2022.11.028

    View details for PubMedID 36563664

  • Aging-associated HELIOS deficiency in naive CD4+ T cells alters chromatin remodeling and promotes effector cell responses. Nature immunology Zhang, H., Jadhav, R. R., Cao, W., Goronzy, I. N., Zhao, T. V., Jin, J., Ohtsuki, S., Hu, Z., Morales, J., Greenleaf, W. J., Weyand, C. M., Goronzy, J. J. 2022

    Abstract

    Immune aging combines cellular defects in adaptive immunity with the activation of pathways causing a low-inflammatory state. Here we examined the influence of age on the kinetic changes in the epigenomic and transcriptional landscape induced by T cell receptor (TCR) stimulation in naive CD4+ T cells. Despite attenuated TCR signaling in older adults, TCR activation accelerated remodeling of the epigenome and induced transcription factor networks favoring effector cell differentiation. We identified increased phosphorylation of STAT5, at least in part due to aberrant IL-2 receptor and lower HELIOS expression, as upstream regulators. Human HELIOS-deficient, naive CD4+ T cells, when transferred into human-synovium-mouse chimeras, infiltrated tissues more efficiently. Inhibition of IL-2 or STAT5 activity in T cell responses of older adults restored the epigenetic response pattern to the one seen in young adults. In summary, reduced HELIOS expression in non-regulatory naive CD4+ T cells in older adults directs T cell fate decisions toward inflammatory effector cells that infiltrate tissue.

    View details for DOI 10.1038/s41590-022-01369-x

    View details for PubMedID 36510022

    View details for PubMedCentralID 7494270

  • Engineered cell entry links receptor biology with single-cell genomics. Cell Yu, B., Shi, Q., Belk, J. A., Yost, K. E., Parker, K. R., Li, R., Liu, B. B., Huang, H., Lingwood, D., Greenleaf, W. J., Davis, M. M., Satpathy, A. T., Chang, H. Y. 2022

    Abstract

    Cells communicate with each other via receptor-ligand interactions. Here, we describe lentiviral-mediated cell entry by engineered receptor-ligand interaction (ENTER) to display ligand proteins, deliver payloads, and record receptor specificity. We optimize ENTER to decode interactions between Tcell receptor (TCR)-MHC peptides, antibody-antigen, and other receptor-ligand pairs. A viral presentation strategy allows ENTER to capture interactions between B cell receptor and any antigen. We engineer ENTER to deliver genetic payloads to antigen-specific T or B cells to selectively modulate cellular behavior in mixed populations. Single-cell readout of ENTER by RNA sequencing (ENTER-seq) enables multiplexed enumeration of antigen specificities, TCR clonality, cell type, and states of individual Tcells. ENTER-seq of CMV-seropositive patient blood samples reveals the viral epitopes that drive effector memory Tcell differentiation and inter-clonal vs. intra-clonal phenotypic diversity targeting the same epitope. ENTER technology enables systematic discovery of receptor specificity, linkage to cell fates, and antigen-specific cargo delivery.

    View details for DOI 10.1016/j.cell.2022.11.016

    View details for PubMedID 36516854

  • Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nature genetics Hung, K. L., Luebeck, J., Dehkordi, S. R., Colon, C. I., Li, R., Wong, I. T., Coruh, C., Dharanipragada, P., Lomeli, S. H., Weiser, N. E., Moriceau, G., Zhang, X., Bailey, C., Houlahan, K. E., Yang, W., Gonzalez, R. C., Swanton, C., Curtis, C., Jamal-Hanjani, M., Henssen, A. G., Law, J. A., Greenleaf, W. J., Lo, R. S., Mischel, P. S., Bafna, V., Chang, H. Y. 2022

    Abstract

    Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we adapt CRISPR-CATCH, in vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA, previously developed for bacterial chromosome segments, to isolate megabase-sized human ecDNAs. We demonstrate strong enrichment of ecDNA molecules containing EGFR, FGFR2 and MYC from human cancer cells and NRAS ecDNA from human metastatic melanoma with acquired therapeutic resistance. Targeted enrichment of ecDNA versus chromosomal DNA enabled phasing of genetic variants, identified the presence of an EGFRvIII mutation exclusively on ecDNAs and supported an excision model of ecDNA genesis in a glioblastoma model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNAs. We distinguished heterogeneous ecDNA species within the same sample by size and sequence with base-pair resolution and discovered functionally specialized ecDNAs that amplify select enhancers or oncogene-coding sequences.

    View details for DOI 10.1038/s41588-022-01190-0

    View details for PubMedID 36253572

  • PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature Hashimoto, M., Araki, K., Cardenas, M. A., Li, P., Jadhav, R. R., Kissick, H. T., Hudson, W. H., McGuire, D. J., Obeng, R. C., Wieland, A., Lee, J., McManus, D. T., Ross, J. L., Im, S. J., Lee, J., Lin, J. X., Hu, B., West, E. E., Scharer, C. D., Freeman, G. J., Sharpe, A. H., Ramalingam, S. S., Pellerin, A., Teichgräber, V., Greenleaf, W. J., Klein, C., Goronzy, J. J., Umaña, P., Leonard, W. J., Smith, K. A., Ahmed, R. 2022

    Abstract

    Combination therapy with PD-1 blockade and IL-2 is highly effective during chronic lymphocytic choriomeningitis virus infection1. Here we examine the underlying basis for this synergy. We show that PD-1 + IL-2 combination therapy, in contrast to PD-1 monotherapy, substantially changes the differentiation program of the PD-1+TCF1+ stem-like CD8+ T cells and results in the generation of transcriptionally and epigenetically distinct effector CD8+ T cells that resemble highly functional effector CD8+ T cells seen after an acute viral infection. The generation of these qualitatively superior CD8+ T cells that mediate viral control underlies the synergy between PD-1 and IL-2. Our results show that the PD-1+TCF1+ stem-like CD8+ T cells, also referred to as precursors of exhausted CD8+ T cells, are not fate-locked into the exhaustion program and their differentiation trajectory can be changed by IL-2 signals. These virus-specific effector CD8+ T cells emerging from the stem-like CD8+ T cells after combination therapy expressed increased levels of the high-affinity IL-2 trimeric (CD25-CD122-CD132) receptor. This was not seen after PD-1 blockade alone. Finally, we show that CD25 engagement with IL-2 has an important role in the observed synergy between IL-2 cytokine and PD-1 blockade. Either blocking CD25 with an antibody or using a mutated version of IL-2 that does not bind to CD25 but still binds to CD122 and CD132 almost completely abrogated the synergistic effects observed after PD-1 + IL-2 combination therapy. There is considerable interest in PD-1 + IL-2 combination therapy for patients with cancer2,3, and our fundamental studies defining the underlying mechanisms of how IL-2 synergizes with PD-1 blockade should inform these human translational studies.

    View details for DOI 10.1038/s41586-022-05257-0

    View details for PubMedID 36171288

  • A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4. Nature communications Sadee, C., Hagler, L. D., Becker, W. R., Jarmoskaite, I., Vaidyanathan, P. P., Denny, S. K., Greenleaf, W. J., Herschlag, D. 2022; 13 (1): 4522

    Abstract

    Genomic methods have been valuable for identifying RNA-binding proteins (RBPs) and the genes, pathways, and processes they regulate. Nevertheless, standard motif descriptions cannot be used to predict all RNA targets or test quantitative models for cellular interactions and regulation. We present a complete thermodynamic model for RNA binding to the S. cerevisiae Pumilio protein PUF4 derived from direct binding data for 6180 RNAs measured using the RNA on a massively parallel array (RNA-MaP) platform. The PUF4 model is highly similar to that of the related RBPs, human PUM2 and PUM1, with one marked exception: a single favorable site of base flipping for PUF4, such that PUF4 preferentially binds to a non-contiguous series of residues. These results are foundational for developing and testing cellular models of RNA-RBP interactions and function, for engineering RBPs, for understanding the biophysical nature of RBP binding and the evolutionary landscape of RNAs and RBPs.

    View details for DOI 10.1038/s41467-022-31968-z

    View details for PubMedID 35927243

  • Systematic discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune networks. Nature genetics Freimer, J. W., Shaked, O., Naqvi, S., Sinnott-Armstrong, N., Kathiria, A., Garrido, C. M., Chen, A. F., Cortez, J. T., Greenleaf, W. J., Pritchard, J. K., Marson, A. 2022

    Abstract

    Gene regulatory networks ensure that important genes are expressed at precise levels. When gene expression is sufficiently perturbed, it can lead to disease. To understand how gene expression disruptions percolate through a network, we must first map connections between regulatory genes and their downstream targets. However, we lack comprehensive knowledge of the upstream regulators of most genes. Here, we developed an approach for systematic discovery of upstream regulators of critical immune factors-IL2RA, IL-2 and CTLA4-in primary human T cells. Then, we mapped the network of the target genes of these regulators and putative cis-regulatory elements using CRISPR perturbations, RNA-seq and ATAC-seq. These regulators form densely interconnected networks with extensive feedback loops. Furthermore, this network is enriched for immune-associated disease variants and genes. These results provide insight into how immune-associated disease genes are regulated in T cells and broader principles about the structure of human gene regulatory networks.

    View details for DOI 10.1038/s41588-022-01106-y

    View details for PubMedID 35817986

  • Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nature genetics Becker, W. R., Nevins, S. A., Chen, D. C., Chiu, R., Horning, A. M., Guha, T. K., Laquindanum, R., Mills, M., Chaib, H., Ladabaum, U., Longacre, T., Shen, J., Esplin, E. D., Kundaje, A., Ford, J. M., Curtis, C., Snyder, M. P., Greenleaf, W. J. 2022

    Abstract

    To chart cell composition and cell state changes that occur during the transformation of healthy colon to precancerous adenomas to colorectal cancer (CRC), we generated single-cell chromatin accessibility profiles and single-cell transcriptomes from 1,000 to 10,000 cells per sample for 48 polyps, 27 normal tissues and 6 CRCs collected from patients with or without germline APC mutations. A large fraction of polyp and CRC cells exhibit a stem-like phenotype, and we define a continuum of epigenetic and transcriptional changes occurring in these stem-like cells as they progress from homeostasis to CRC. Advanced polyps contain increasing numbers of stem-like cells, regulatory T cells and a subtype of pre-cancer-associated fibroblasts. In the cancerous state, we observe T cell exhaustion, RUNX1-regulated cancer-associated fibroblasts and increasing accessibility associated with HNF4A motifs in epithelia. DNA methylation changes in sporadic CRC are strongly anti-correlated with accessibility changes along this continuum, further identifying regulatory markers for molecular staging of polyps.

    View details for DOI 10.1038/s41588-022-01088-x

    View details for PubMedID 35726067

  • Crowdsourced RNA design discovers diverse, reversible, efficient, self-contained molecular switches. Proceedings of the National Academy of Sciences of the United States of America Andreasson, J. O., Gotrik, M. R., Wu, M. J., Wayment-Steele, H. K., Kladwang, W., Portela, F., Wellington-Oguri, R., Eterna Participants, Das, R., Greenleaf, W. J. 2022; 119 (18): e2112979119

    Abstract

    SignificanceOur manuscript presents a paradigm for carrying out distributed science. We have harnessed an online RNA design game, Eterna, to challenge a large community of RNA designers to create diverse RNA sensors. RNA is an attractive, biocompatible substrate for the design and implementation of molecular sensors. We tasked the diverse Eterna community, comprising a global network of molecular design enthusiasts, to submit thousands to tens of thousands of "solutions" to these RNA sensor design challenges. Crucially, community designs were synthesized and tested experimentally in the real world using high-throughput methods for biochemical assays built on repurposed DNA sequencers. The best player-generated designs for RNA sensors approached the thermodynamic optimum.

    View details for DOI 10.1073/pnas.2112979119

    View details for PubMedID 35471911

  • NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nature methods Chen, A. F., Parks, B., Kathiria, A. S., Ober-Reynolds, B., Goronzy, J. J., Greenleaf, W. J. 2022

    Abstract

    In this work, we describe NEAT-seq (sequencing of nuclear protein epitope abundance, chromatin accessibility and the transcriptome in single cells), enabling interrogation of regulatory mechanisms spanning the central dogma. We apply this technique to profile CD4 memory T cells using a panel of master transcription factors (TFs) that drive T cell subsets and identify examples of TFs with regulatory activity gated by transcription, translation and regulation of chromatin binding. We also link a noncoding genome-wide association study single-nucleotide polymorphism (SNP) within a GATA motif to a putative target gene, using NEAT-seq data to internally validate SNP impact on GATA3 regulation.

    View details for DOI 10.1038/s41592-022-01461-y

    View details for PubMedID 35501385

  • Integrating transcription-factor abundance with chromatin accessibility in human erythroid lineage commitment. Cell reports methods Baskar, R., Chen, A. F., Favaro, P., Reynolds, W., Mueller, F., Borges, L., Jiang, S., Park, H. S., Kool, E. T., Greenleaf, W. J., Bendall, S. C. 2022; 2 (3)

    Abstract

    Master transcription factors (TFs) directly regulate present and future cell states by binding DNA regulatory elements and driving gene-expression programs. Their abundance influences epigenetic priming to different cell fates at the chromatin level, especially in the context of differentiation. In order to link TF protein abundance to changes in TF motif accessibility and open chromatin, we developed InTAC-seq, a method for simultaneous quantification of genome-wide chromatin accessibility and intracellular protein abundance in fixed cells. Our method produces high-quality data and is a cost-effective alternative to single-cell techniques. We showcase our method by purifying bone marrow (BM) progenitor cells based on GATA-1 protein levels and establish high GATA-1-expressing BM cells as both epigenetically and functionally similar to erythroid-committed progenitors.

    View details for DOI 10.1016/j.crmeth.2022.100188

    View details for PubMedID 35463156

  • Generation of a dual edited human induced pluripotent stem cell Myl7-GFP reporter line with inducible CRISPRi/dCas9. Stem cell research Metzl-Raz, E., Bharucha, N., Arthur Ataam, J., Gavidia, A. A., Greenleaf, W. J., Karakikes, I. 2022; 61: 102754

    Abstract

    Temporal regulation of CRISPRi activity is critical for genetic screens. Here, we present an inducible CRISPRi platform enabling selection of iPSC-derived cardiomyocytes and reversible gene knockdown. We targeted a doxycycline-inducible dCas9-KRAB-mCherry cassette into the AAVS1 locus in an MYL7-mGFP reporter iPSC line. A clone with bi-allelic integration displayed minimally leaky CRISPRi activity and strong expression upon addition of doxycycline in iPSCs, iPSC-derived cardiomyocytes, and multilineage differentiated cells. The CRISPRi activity was validated by targeting the MYOCD gene in iPSC cardiomyocytes. In summary, we developed a robust inducible CRISPRi platform to interrogate gene function in human iPSC-derived cardiomyocytes and other cells.

    View details for DOI 10.1016/j.scr.2022.102754

    View details for PubMedID 35325819

  • High-throughput biochemical profiling reveals functional adaptation of a bacterial Argonaute. Molecular cell Ober-Reynolds, B., Becker, W. R., Jouravleva, K., Jolly, S. M., Zamore, P. D., Greenleaf, W. J. 2022

    Abstract

    Argonautes are nucleic acid-guided proteins that perform numerous cellular functions across all domains of life. Little is known about how distinct evolutionary pressures have shaped each Argonaute's biophysical properties. We applied high-throughput biochemistry to characterize how Thermus thermophilus Argonaute (TtAgo), a DNA-guided DNA endonuclease, finds, binds, and cleaves its targets. We found that TtAgo uses biophysical adaptations similar to those of eukaryotic Argonautes for rapid association but requires more extensive complementarity to achieve high-affinity target binding. Using these data, we constructed models for TtAgo association rates and equilibrium binding affinities that estimate the nucleic acid- and protein-mediated components of the target interaction energies. Finally, we showed that TtAgo cleavage rates vary widely based on the DNA guide, suggesting that only a subset of guides cleaves targets on physiologically relevant timescales.

    View details for DOI 10.1016/j.molcel.2022.02.026

    View details for PubMedID 35298909

  • MITI minimum information guidelines for highly multiplexed tissue images. Nature methods Schapiro, D., Yapp, C., Sokolov, A., Reynolds, S. M., Chen, Y., Sudar, D., Xie, Y., Muhlich, J., Arias-Camison, R., Arena, S., Taylor, A. J., Nikolov, M., Tyler, M., Lin, J., Burlingame, E. A., Human Tumor Atlas Network, Chang, Y. H., Farhi, S. L., Thorsson, V., Venkatamohan, N., Drewes, J. L., Pe'er, D., Gutman, D. A., Herrmann, M. D., Gehlenborg, N., Bankhead, P., Roland, J. T., Herndon, J. M., Snyder, M. P., Angelo, M., Nolan, G., Swedlow, J. R., Schultz, N., Merrick, D. T., Mazzili, S. A., Cerami, E., Rodig, S. J., Santagata, S., Sorger, P. K., Abravanel, D. L., Achilefu, S., Ademuyiwa, F. O., Adey, A. C., Aft, R., Ahn, K. J., Alikarami, F., Alon, S., Ashenberg, O., Baker, E., Baker, G. J., Bandyopadhyay, S., Bayguinov, P., Beane, J., Becker, W., Bernt, K., Betts, C. B., Bletz, J., Blosser, T., Boire, A., Boland, G. M., Boyden, E. S., Bucher, E., Bueno, R., Cai, Q., Cambuli, F., Campbell, J., Cao, S., Caravan, W., Chaligne, R., Chan, J. M., Chasnoff, S., Chatterjee, D., Chen, A. A., Chen, C., Chen, C., Chen, B., Chen, F., Chen, S., Chheda, M. G., Chin, K., Cho, H., Chun, J., Cisneros, L., Coffey, R. J., Cohen, O., Colditz, G. A., Cole, K. A., Collins, N., Cotter, D., Coussens, L. M., Coy, S., Creason, A. L., Cui, Y., Zhou, D. C., Curtis, C., Davies, S. R., Bruijn, I., Delorey, T. M., Demir, E., Denardo, D., Diep, D., Ding, L., DiPersio, J., Dubinett, S. M., Eberlein, T. J., Eddy, J. A., Esplin, E. D., Factor, R. E., Fatahalian, K., Feiler, H. S., Fernandez, J., Fields, A., Fields, R. C., Fitzpatrick, J. A., Ford, J. M., Franklin, J., Fulton, B., Gaglia, G., Galdieri, L., Ganesh, K., Gao, J., Gaudio, B. L., Getz, G., Gibbs, D. L., Gillanders, W. E., Goecks, J., Goodwin, D., Gray, J. W., Greenleaf, W., Grimm, L. J., Gu, Q., Guerriero, J. L., Guha, T., Guimaraes, A. R., Gutierrez, B., Hacohen, N., Hanson, C. R., Harris, C. R., Hawkins, W. G., Heiser, C. N., Hoffer, J., Hollmann, T. J., Hsieh, J. J., Huang, J., Hunger, S. P., Hwang, E., Iacobuzio-Donahue, C., Iglesia, M. D., Islam, M., Izar, B., Jacobson, C. A., Janes, S., Jayasinghe, R. G., Jeudi, T., Johnson, B. E., Johnson, B. E., Ju, T., Kadara, H., Karnoub, E., Karpova, A., Khan, A., Kibbe, W., Kim, A. H., King, L. M., Kozlowski, E., Krishnamoorthy, P., Krueger, R., Kundaje, A., Ladabaum, U., Laquindanum, R., Lau, C., Lau, K. S., LeBoeuf, N. R., Lee, H., Lenburg, M., Leshchiner, I., Levy, R., Li, Y., Lian, C. G., Liang, W., Lim, K., Lin, Y., Liu, D., Liu, Q., Liu, R., Lo, J., Lo, P., Longabaugh, W. J., Longacre, T., Luckett, K., Ma, C., Maher, C., Maier, A., Makowski, D., Maley, C., Maliga, Z., Manoj, P., Maris, J. M., Markham, N., Marks, J. R., Martinez, D., Mashl, J., Masilionis, I., Massague, J., Mazurowski, M. A., McKinley, E. T., McMichael, J., Meyerson, M., Mills, G. B., Mitri, Z. I., Moorman, A., Mudd, J., Murphy, G. F., Deen, N. N., Navin, N. E., Nawy, T., Ness, R. M., Nevins, S., Nirmal, A. J., Novikov, E., Oh, S. T., Oldridge, D. A., Owzar, K., Pant, S. M., Park, W., Patti, G. J., Paul, K., Pelletier, R., Persson, D., Petty, C., Pfister, H., Polyak, K., Puram, S. V., Qiu, Q., Villalonga, A. Q., Ramirez, M. A., Rashid, R., Reeb, A. N., Reid, M. E., Remsik, J., Riesterer, J. L., Risom, T., Ritch, C. C., Rolong, A., Rudin, C. M., Ryser, M. D., Sato, K., Sears, C. L., Semenov, Y. R., Shen, J., Shoghi, K. I., Shrubsole, M. J., Shyr, Y., Sibley, A. B., Simmons, A. J., Sinha, A., Sivagnanam, S., Song, S., Southar-Smith, A., Spira, A. E., Cyr, J. S., Stefankiewicz, S., Storrs, E. P., Stover, E. H., Strand, S. H., Straub, C., Street, C., Su, T., Surrey, L. F., Suver, C., Tan, K., Terekhanova, N. V., Ternes, L., Thadi, A., Thomas, G., Tibshirani, R., Umeda, S., Uzun, Y., Vallius, T., Van Allen, E. R., Vandekar, S., Vega, P. N., Veis, D. J., Vennam, S., Verma, A., Vigneau, S., Wagle, N., Wahl, R., Walle, T., Wang, L., Warchol, S., Washington, M. K., Watson, C., Weimer, A. K., Wendl, M. C., West, R. B., White, S., Windon, A. L., Wu, H., Wu, C., Wu, Y., Wyczalkowski, M. A., Xu, J., Yao, L., Yu, W., Zhang, K., Zhu, X. 2022; 19 (3): 262-267

    View details for DOI 10.1038/s41592-022-01415-4

    View details for PubMedID 35277708

  • The chromatin organization of a chlorarachniophyte nucleomorph genome. Genome biology Marinov, G. K., Chen, X., Wu, T., He, C., Grossman, A. R., Kundaje, A., Greenleaf, W. J. 2022; 23 (1): 65

    Abstract

    BACKGROUND: Nucleomorphs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features.RESULTS: In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans. We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain.CONCLUSIONS: We provide the first study of a nucleomorph genome using modern functional genomic tools, and derive numerous novel insights into the physical and functional organization of these unique genomes.

    View details for DOI 10.1186/s13059-022-02639-5

    View details for PubMedID 35232465

  • Short tandem repeats recruit transcription factors to tune eukaryotic gene expression Horton, C. A., Alexandari, A. M., Hayes, M. G., Schaepe, J. M., Marklund, E., Shah, N., Aditham, A. K., Shrikumar, A., Afek, A., Greenleaf, W. J., Gordan, R., Zeitlinger, J., Kundaje, A., Fordyce, P. M. CELL PRESS. 2022: 287A-288A
  • Reduced chromatin accessibility to CD4 T cell super-enhancers encompassing susceptibility loci of rheumatoid arthritis. EBioMedicine Jadhav, R. R., Hu, B., Ye, Z., Sheth, K., Li, X., Greenleaf, W. J., Weyand, C. M., Goronzy, J. J. 1800; 76: 103825

    Abstract

    BACKGROUND: Rheumatoid arthritis (RA) is an inflammatory disease that manifests as a preclinical stage of systemic autoimmunity followed by chronic progressive synovitis. Disease-associated genetic SNP variants predominantly map to non-coding, regulatory regions of functional importance in CD4 T cells, implicating these cells as key regulators. A better understanding of the epigenome of CD4 T cells holds the promise of providing information on the interaction between genetic susceptibility and exogenous factors.METHODS: We mapped regions of chromatin accessibility using ATAC-seq in peripheral CD4 T cell subsets of patients with RA (n=18) and compared them to T cells from patients with psoriatic arthritis (n=11) and age-matched healthy controls (n=10). Transcripts of selected genes were quantified using qPCR.FINDINGS: RA-associated epigenetic signatures were identified that in part overlapped between central and effector memory CD4 T cells and that were to a lesser extent already present in naive cells. Sites more accessible in RA were highly enriched for the motif of the transcription factor (TF) CTCF suggesting differences in the three-dimensional chromatin structure. Unexpectedly, sites with reduced chromatin accessibility were enriched for motifs of TFs pertinent for T cell function. Most strikingly, super-enhancers encompassing RA-associated SNPs were less accessible. Analysis of selected transcripts and published DNA methylation patterns were consistent with this finding. The preferential loss in accessibility at these super-enhancers was seen in patients with high and low disease activity and on a variety of immunosuppressive treatment modalities.INTERPRETATION: Disease-associated genes are epigenetically less poised to respond in CD4 T cells from patients with established RA.FUNDING: This work was supported by I01 BX001669 from the Veterans Administration.

    View details for DOI 10.1016/j.ebiom.2022.103825

    View details for PubMedID 35085847

  • Single-Molecule Multikilobase-Scale Profiling of Chromatin Accessibility Using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq. Methods in molecular biology (Clifton, N.J.) Marinov, G. K., Shipony, Z., Kundaje, A., Greenleaf, W. J. 2022; 2458: 269-298

    Abstract

    A hallmark feature of active cis-regulatory elements (CREs) in eukaryotes is their nucleosomal depletion and, accordingly, higher accessibility to enzymatic treatment. This property has been the basis of a number of sequencing-based assays for genome-wide identification and tracking the activity of CREs across different biological conditions, such as DNAse-seq, ATAC-seq , NOMeseq, and others. However, the fragmentation of DNA inherent to many of these assays and the limited read length of short-read sequencing platforms have so far not allowed the simultaneous measurement of the chromatin accessibility state of CREs located distally from each other. The combination of labeling accessible DNA with DNA modifications and nanopore sequencing has made it possible to develop such assays. Here, we provide a detailed protocol for carrying out the SMAC-seq assay (Single-Molecule long-read Accessible Chromatin mapping sequencing), in its m6A-SMAC-seq and m6A-CpG-GpC-SMAC-seq variants, together with methods for data processing and analysis, and discuss key experimental and analytical considerations for working with SMAC-seq datasets.

    View details for DOI 10.1007/978-1-0716-2140-0_15

    View details for PubMedID 35103973

  • An optimized ATAC-seq protocol for genome-wide mapping of active regulatory elements in primary mouse cortical neurons. STAR protocols Maor-Nof, M., Shipony, Z., Marinov, G. K., Greenleaf, W. J., Gitler, A. D. 2021; 2 (4): 100854

    Abstract

    ATAC-seq is a versatile, adaptable, and widely adopted technique for mapping open chromatin regions. However, some biological systems, such as primary neurons, present unique challenges to its application. Conventional ATAC-seq would require the dissociation of the primary neurons after plating but dissociating them leads to rapid cell death and major changes in cell state, affecting ATAC-seq results. We have developed this modified ATAC-seq protocol to address this challenge for primary neurons, providing a high-quality and high-resolution accessible chromatin profile. For complete details on the use and execution of this protocol, please refer to Maor-Nof etal. (2021).

    View details for DOI 10.1016/j.xpro.2021.100854

    View details for PubMedID 34647036

  • DIMINISHED V delta 2+delta gamma T CELL CYTOKINE PRODUCTION AND DEGRANULATION FOLLOWING IN VITRO MALARIA EXPOSURE Dantzler, K., Klemm, S., Rek, J., Nankya, F., Ssewanyana, I., Kamya, M., Greenhouse, B., Dorsey, G., Feeney, M., Greenleaf, W., Jagannathan, P. AMER SOC TROP MED & HYGIENE. 2021: 16
  • Transcriptional and chromatin-based partitioning mechanisms uncouple protein scaling from cell size. Molecular cell Swaffer, M. P., Kim, J., Chandler-Brown, D., Langhinrichs, M., Marinov, G. K., Greenleaf, W. J., Kundaje, A., Schmoller, K. M., Skotheim, J. M. 2021

    Abstract

    Biosynthesis scales with cell size such that protein concentrations generally remain constant as cells grow. As an exception, synthesis of the cell-cycle inhibitor Whi5 "sub-scales" with cell size so that its concentration is lower in larger cells to promote cell-cycle entry. Here, we find that transcriptional control uncouples Whi5 synthesis from cell size, and we identify histones as the major class of sub-scaling transcripts besides WHI5 by screening for similar genes. Histone synthesis is thereby matched to genome content rather than cell size. Such sub-scaling proteins are challenged by asymmetric cell division because proteins are typically partitioned in proportion to newborn cell volume. To avoid this fate, Whi5 uses chromatin-binding to partition similar protein amounts to each newborn cell regardless of cell size. Disrupting both Whi5 synthesis and chromatin-based partitioning weakens G1 size control. Thus, specific transcriptional and partitioning mechanisms determine protein sub-scaling to control cell size.

    View details for DOI 10.1016/j.molcel.2021.10.007

    View details for PubMedID 34731644

  • The dynamic, combinatorial cis-regulatory lexicon of epidermal differentiation. Nature genetics Kim, D. S., Risca, V. I., Reynolds, D. L., Chappell, J., Rubin, A. J., Jung, N., Donohue, L. K., Lopez-Pajares, V., Kathiria, A., Shi, M., Zhao, Z., Deep, H., Sharmin, M., Rao, D., Lin, S., Chang, H. Y., Snyder, M. P., Greenleaf, W. J., Kundaje, A., Khavari, P. A. 2021

    Abstract

    Transcription factors bind DNA sequence motif vocabularies in cis-regulatory elements (CREs) to modulate chromatin state and gene expression during cell state transitions. A quantitative understanding of how motif lexicons influence dynamic regulatory activity has been elusive due to the combinatorial nature of the cis-regulatory code. To address this, we undertook multiomic data profiling of chromatin and expression dynamics across epidermal differentiation to identify 40,103 dynamic CREs associated with 3,609 dynamically expressed genes, then applied an interpretable deep-learning framework to model the cis-regulatory logic of chromatin accessibility. This analysis framework identified cooperative DNA sequence rules in dynamic CREs regulating synchronous gene modules with diverse roles in skin differentiation. Massively parallel reporter assay analysis validated temporal dynamics and cooperative cis-regulatory logic. Variants linked to human polygenic skin disease were enriched in these time-dependent combinatorial motif rules. This integrative approach shows the combinatorial cis-regulatory lexicon of epidermal differentiation and represents a general framework for deciphering the organizational principles of the cis-regulatory code of dynamic gene regulation.

    View details for DOI 10.1038/s41588-021-00947-3

    View details for PubMedID 34650237

  • High-throughput dissection of the thermodynamic and conformational properties of a ubiquitous class of RNA tertiary contact motifs. Proceedings of the National Academy of Sciences of the United States of America Bonilla, S. L., Denny, S. K., Shin, J. H., Alvarez-Buylla, A., Greenleaf, W. J., Herschlag, D. 2021; 118 (33)

    Abstract

    Despite RNA's diverse secondary and tertiary structures and its complex conformational changes, nature utilizes a limited set of structural "motifs"-helices, junctions, and tertiary contact modules-to build diverse functional RNAs. Thus, in-depth descriptions of a relatively small universe of RNA motifs may lead to predictive models of RNA tertiary conformational landscapes. Motifs may have different properties depending on sequence and secondary structure, giving rise to subclasses that expand the universe of RNA building blocks. Yet we know very little about motif subclasses, given the challenges in mapping conformational properties in high throughput. Previously, we used "RNA on a massively parallel array" (RNA-MaP), a quantitative, high-throughput technique, to study thousands of helices and two-way junctions. Here, we adapt RNA-MaP to study the thermodynamic and conformational properties of tetraloop/tetraloop receptor (TL/TLR) tertiary contact motifs, analyzing 1,493 TLR sequences from different classes. Clustering analyses revealed variability in TL specificity, stability, and conformational behavior. Nevertheless, natural GAAA/11ntR TL/TLRs, while varying in tertiary stability by 2.5 kcal/mol, exhibited conserved TL specificity and conformational properties. Thus, RNAs may tune stability without altering the overall structure of these TL/TLRs. Furthermore, their stability correlated with natural frequency, suggesting thermodynamics as the dominant selection pressure. In contrast, other TL/TLRs displayed heterogenous conformational behavior and appear to not be under strong thermodynamic selection. Our results build toward a generalizable model of RNA-folding thermodynamics based on the properties of isolated motifs, and our characterized TL/TLR library can be used to engineer RNAs with predictable thermodynamic and conformational behavior.

    View details for DOI 10.1073/pnas.2109085118

    View details for PubMedID 34373334

  • LKB1 inactivation modulates chromatin accessibility to drive metastatic progression. Nature cell biology Pierce, S. E., Granja, J. M., Corces, M. R., Brady, J. J., Tsai, M. K., Pierce, A. B., Tang, R., Chu, P., Feldser, D. M., Chang, H. Y., Bassik, M. C., Greenleaf, W. J., Winslow, M. M. 2021

    Abstract

    Metastasis is the leading cause of cancer-related deaths and enables cancer cells to compromise organ function by expanding in secondary sites. Since primary tumours and metastases often share the same constellation of driver mutations, the mechanisms that drive their distinct phenotypes are unclear. Here we show that inactivation of the frequently mutated tumour suppressor gene LKB1 (encoding liver kinase B1) has evolving effects throughout the progression of lung cancer, which leads to the differential epigenetic re-programming of early-stage primary tumours compared with late-stage metastases. By integrating genome-scale CRISPR-Cas9 screening with bulk and single-cell multi-omic analyses, we unexpectedly identify LKB1 as a master regulator of chromatin accessibility in lung adenocarcinoma primary tumours. Using an in vivo model of metastatic progression, we further show that loss of LKB1 activates the early endoderm transcription factor SOX17 in metastases and a metastatic-like sub-population of cancer cells within primary tumours. The expression of SOX17 is necessary and sufficient to drive a second wave of epigenetic changes in LKB1-deficient cells that enhances metastatic ability. Overall, our study demonstrates how the downstream effects of an individual driver mutation can change throughout cancer development, with implications for stage-specific therapeutic resistance mechanisms and the gene regulatory underpinnings of metastatic evolution.

    View details for DOI 10.1038/s41556-021-00728-4

    View details for PubMedID 34341533

  • Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. The Journal of experimental medicine Wilk, A. J., Lee, M. J., Wei, B., Parks, B., Pi, R., Martinez-Colon, G. J., Ranganath, T., Zhao, N. Q., Taylor, S., Becker, W., Stanford COVID-19 Biobank, Jimenez-Morales, D., Blomkalns, A. L., O'Hara, R., Ashley, E. A., Nadeau, K. C., Yang, S., Holmes, S., Rabinovitch, M., Rogers, A. J., Greenleaf, W. J., Blish, C. A. 2021; 218 (8)

    Abstract

    Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-kappaB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.

    View details for DOI 10.1084/jem.20210582

    View details for PubMedID 34128959

  • Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America Gennert, D. G., Lynn, R. C., Granja, J. M., Weber, E. W., Mumbach, M. R., Zhao, Y., Duren, Z., Sotillo, E., Greenleaf, W. J., Wong, W. H., Satpathy, A. T., Mackall, C. L., Chang, H. Y. 2021; 118 (30)

    Abstract

    Dysfunction in T cells limits the efficacy of cancer immunotherapy. We profiled the epigenome, transcriptome, and enhancer connectome of exhaustion-prone GD2-targeting HA-28z chimeric antigen receptor (CAR) T cells and control CD19-targeting CAR T cells, which present less exhaustion-inducing tonic signaling, at multiple points during their ex vivo expansion. We found widespread, dynamic changes in chromatin accessibility and three-dimensional (3D) chromosome conformation preceding changes in gene expression, notably at loci proximal to exhaustion-associated genes such as PDCD1, CTLA4, and HAVCR2, and increased DNA motif access for AP-1 family transcription factors, which are known to promote exhaustion. Although T cell exhaustion has been studied in detail in mice, we find that the regulatory networks of T cell exhaustion differ between species and involve distinct loci of accessible chromatin and cis-regulated target genes in human CAR T cell exhaustion. Deletion of exhaustion-specific candidate enhancers of PDCD1 suppress the expression of PD-1 in an in vitro model of T cell dysfunction and in HA-28z CAR T cells, suggesting enhancer editing as a path forward in improving cancer immunotherapy.

    View details for DOI 10.1073/pnas.2104758118

    View details for PubMedID 34285077

  • Transcription-dependent domain-scale three-dimensional genome organization in the dinoflagellate Breviolum minutum. Nature genetics Marinov, G. K., Trevino, A. E., Xiang, T., Kundaje, A., Grossman, A. R., Greenleaf, W. J. 2021

    Abstract

    Dinoflagellate chromosomes represent a unique evolutionary experiment, as they exist in a permanently condensed, liquid crystalline state; are not packaged by histones; and contain genes organized into tandem gene arrays, with minimal transcriptional regulation. We analyze the three-dimensional genome of Breviolum minutum, and find large topological domains (dinoflagellate topologically associating domains, which we term 'dinoTADs') without chromatin loops, which are demarcated by convergent gene array boundaries. Transcriptional inhibition disrupts dinoTADs, implicating transcription-induced supercoiling as the primary topological force in dinoflagellates.

    View details for DOI 10.1038/s41588-021-00848-5

    View details for PubMedID 33927397

  • Author Correction: ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nature genetics Granja, J. M., Corces, M. R., Pierce, S. E., Bagdatli, S. T., Choudhry, H., Chang, H. Y., Greenleaf, W. J. 2021

    View details for DOI 10.1038/s41588-021-00850-x

    View details for PubMedID 33790476

  • ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nature genetics Granja, J. M., Corces, M. R., Pierce, S. E., Bagdatli, S. T., Choudhry, H., Chang, H. Y., Greenleaf, W. J. 2021

    Abstract

    The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells.

    View details for DOI 10.1038/s41588-021-00790-6

    View details for PubMedID 33633365

  • Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nature neuroscience Blum, J. A., Klemm, S., Shadrach, J. L., Guttenplan, K. A., Nakayama, L., Kathiria, A., Hoang, P. T., Gautier, O., Kaltschmidt, J. A., Greenleaf, W. J., Gitler, A. D. 2021

    Abstract

    The spinal cord is a fascinating structure that is responsible for coordinating movement in vertebrates. Spinal motor neurons control muscle activity by transmitting signals from the spinal cord to diverse peripheral targets. In this study, we profiled 43,890 single-nucleus transcriptomes from the adult mouse spinal cord using fluorescence-activated nuclei sorting to enrich for motor neuron nuclei. We identified 16 sympathetic motor neuron clusters, which are distinguishable by spatial localization and expression of neuromodulatory signaling genes. We found surprising skeletal motor neuron heterogeneity in the adult spinal cord, including transcriptional differences that correlate with electrophysiologically and spatially distinct motor pools. We also provide evidence for a novel transcriptional subpopulation of skeletal motor neuron (gamma*). Collectively, these data provide a single-cell transcriptional atlas ( http://spinalcordatlas.org ) for investigating the organizing molecular logic of adult motor neuron diversity, as well as the cellular and molecular basis of motor neuron function in health and disease.

    View details for DOI 10.1038/s41593-020-00795-0

    View details for PubMedID 33589834

  • Comprehensive Sequence-to-Function Mapping of Ligand-Dependent RNA Catalysis Savinov, A., Andreasson, J. L., Block, S. M., Greenleaf, W. J. CELL PRESS. 2021: 286A
  • Chromatin accessibility profiling methods NATURE REVIEWS METHODS PRIMERS Morneau, D. 2021; 1 (1)
  • Chromatin accessibility profiling methods. Nature reviews. Methods primers Minnoye, L., Marinov, G. K., Krausgruber, T., Pan, L., Marand, A. P., Secchia, S., Greenleaf, W. J., Furlong, E. E., Zhao, K., Schmitz, R. J., Bock, C., Aerts, S. 2021; 1

    Abstract

    Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.

    View details for DOI 10.1038/s43586-020-00008-9

    View details for PubMedID 38410680

    View details for PubMedCentralID PMC10895463

  • Chromatin accessibility profiling methods NATURE REVIEWS METHODS PRIMERS Minnoye, L., Marinov, G. K., Krausgruber, T., Pan, L., Marand, A. P., Secchia, S., Greenleaf, W. J., Furlong, E. M., Zhao, K., Schmitz, R. J., Bock, C., Aerts, S. 2021; 1 (1)
  • p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell Maor-Nof, M. n., Shipony, Z. n., Lopez-Gonzalez, R. n., Nakayama, L. n., Zhang, Y. J., Couthouis, J. n., Blum, J. A., Castruita, P. A., Linares, G. R., Ruan, K. n., Ramaswami, G. n., Simon, D. J., Nof, A. n., Santana, M. n., Han, K. n., Sinnott-Armstrong, N. n., Bassik, M. C., Geschwind, D. H., Tessier-Lavigne, M. n., Attardi, L. D., Lloyd, T. E., Ichida, J. K., Gao, F. B., Greenleaf, W. J., Yokoyama, J. S., Petrucelli, L. n., Gitler, A. D. 2021

    Abstract

    The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.

    View details for DOI 10.1016/j.cell.2020.12.025

    View details for PubMedID 33482083

  • Quantification of Cas9 binding and cleavage across diverse guide sequences maps landscapes of target engagement. Science advances Boyle, E. A., Becker, W. R., Bai, H. B., Chen, J. S., Doudna, J. A., Greenleaf, W. J. 2021; 7 (8)

    Abstract

    The RNA-guided nuclease Cas9 has unlocked powerful methods for perturbing both the genome through targeted DNA cleavage and the regulome through targeted DNA binding, but limited biochemical data have hampered efforts to quantitatively model sequence perturbation of target binding and cleavage across diverse guide sequences. We present scalable, sequencing-based platforms for high-throughput filter binding and cleavage and then perform 62,444 quantitative binding and cleavage assays on 35,047 on- and off-target DNA sequences across 90 Cas9 ribonucleoproteins (RNPs) loaded with distinct guide RNAs. We observe that binding and cleavage efficacy, as well as specificity, vary substantially across RNPs; canonically studied guides often have atypically high specificity; sequence context surrounding the target modulates Cas9 on-rate; and Cas9 RNPs may sequester targets in nonproductive states that contribute to "proofreading" capability. Lastly, we distill our findings into an interpretable biophysical model that predicts changes in binding and cleavage for diverse target sequence perturbations.

    View details for DOI 10.1126/sciadv.abe5496

    View details for PubMedID 33608277

  • Finding needles in a haystack: dissecting tumor heterogeneity with single-cell transcriptomic and chromatin accessibility profiling. Current opinion in genetics & development Pierce, S. E., Kim, S. H., Greenleaf, W. J. 2021; 66: 36–40

    Abstract

    Tumor evolution often results in a wealth of heterogeneous cancer cell types within a single tumor - heterogeneity that can include epigenetic and gene expression changes that are impossible to identify from histological features alone. The invasion of cancer cells into nearby healthy tissue, accompanied by the infiltration of responding immune cells, results in an even more complex architecture of tumor and non-tumor cells. However, bulk genomics-based methods can only assay the aggregate transcriptomic and epigenetic profiles across all of this rich cellular diversity. Such bulk averaging hides small subpopulations of tumor cells with unique phenotypes that might result in therapeutic resistance or metastatic progression. The advent of single-cell-based genomics assays for measuring transcription and chromatin accessibility - particularly scRNA-seq and scATAC-seq - has enabled the dissection of cell-types within tumors at a scale and resolution capable of unraveling the epigenetic and gene expression programs of rare and unique cellular subpopulations. This Review focuses on recent advances in scRNA-seq and scATAC-seq technologies and their application to cancer biology in the context of furthering our understanding of tumor heterogeneity.

    View details for DOI 10.1016/j.gde.2020.11.008

    View details for PubMedID 33418426

  • Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci. Science immunology King, H. W., Wells, K. L., Shipony, Z., Kathiria, A. S., Wagar, L. E., Lareau, C., Orban, N., Capasso, R., Davis, M. M., Steinmetz, L. M., James, L. K., Greenleaf, W. J. 2021; 6 (64): eabh3768

    Abstract

    [Figure: see text].

    View details for DOI 10.1126/sciimmunol.abh3768

    View details for PubMedID 34623901

  • High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nature communications Pierce, S. E., Granja, J. M., Greenleaf, W. J. 2021; 12 (1): 2969

    Abstract

    Chromatin accessibility profiling can identify putative regulatory regions genome wide; however, pooled single-cell methods for assessing the effects of regulatory perturbations on accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method (Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and integrated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and the associations between transcription factor binding profiles.

    View details for DOI 10.1038/s41467-021-23213-w

    View details for PubMedID 34016988

  • Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell Trevino, A. E., Müller, F., Andersen, J., Sundaram, L., Kathiria, A., Shcherbina, A., Farh, K., Chang, H. Y., Pașca, A. M., Kundaje, A., Pașca, S. P., Greenleaf, W. J. 2021

    Abstract

    Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates how cell-type-specific mapping can provide insights into the programs governing human development and disease.

    View details for DOI 10.1016/j.cell.2021.07.039

    View details for PubMedID 34390642

  • Increased ACTL6A occupancy within mSWI/SNF chromatin remodelers drives human squamous cell carcinoma. Molecular cell Chang, C. Y., Shipony, Z., Lin, S. G., Kuo, A., Xiong, X., Loh, K. M., Greenleaf, W. J., Crabtree, G. R. 2021

    Abstract

    Mammalian SWI/SNF (BAF) chromatin remodelers play dosage-sensitive roles in many human malignancies and neurologic disorders. The gene encoding the BAF subunit actin-like 6a (ACTL6A) is amplified early in the development of many squamous cell carcinomas (SCCs), but its oncogenic role remains unclear. Here we demonstrate that ACTL6A overexpression leads to its stoichiometric assembly into BAF complexes and drives their interaction and engagement with specific regulatory regions in the genome. In normal epithelial cells, ACTL6A was substoichiometric to other BAF subunits. However, increased ACTL6A levels by ectopic expression or in SCC cells led to near saturation of ACTL6A within BAF complexes. Increased ACTL6A occupancy enhanced polycomb opposition genome-wide to activate SCC genes and facilitated the co-dependent loading of BAF and TEAD-YAP complexes on chromatin. Both mechanisms appeared to be critical and function as a molecular AND gate for SCC initiation and maintenance, thereby explaining the specificity of the role of ACTL6A amplification in SCCs.

    View details for DOI 10.1016/j.molcel.2021.10.005

    View details for PubMedID 34687603

  • Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer's and Parkinson's diseases. Nature genetics Corces, M. R., Shcherbina, A., Kundu, S., Gloudemans, M. J., Fresard, L., Granja, J. M., Louie, B. H., Eulalio, T., Shams, S., Bagdatli, S. T., Mumbach, M. R., Liu, B., Montine, K. S., Greenleaf, W. J., Kundaje, A., Montgomery, S. B., Chang, H. Y., Montine, T. J. 2020

    Abstract

    Genome-wide association studies of neurological diseases have identified thousands of variants associated with disease phenotypes. However, most of these variants do not alter coding sequences, making it difficult to assign their function. Here, we present a multi-omic epigenetic atlas of the adult human brain through profiling of single-cell chromatin accessibility landscapes and three-dimensional chromatin interactions of diverse adult brain regions across a cohort of cognitively healthy individuals. We developed a machine-learning classifier to integrate this multi-omic framework and predict dozens of functional SNPs for Alzheimer's and Parkinson's diseases, nominating target genes and cell types for previously orphaned loci from genome-wide association studies. Moreover, we dissected the complex inverted haplotype of the MAPT (encoding tau) Parkinson's disease risk locus, identifying putative ectopic regulatory interactions in neurons that may mediate this disease association. This work expands understanding of inherited variation and provides a roadmap for the epigenomic dissection of causal regulatory variation in disease.

    View details for DOI 10.1038/s41588-020-00721-x

    View details for PubMedID 33106633

  • A HIGHLY MULTIPLEXED SINGLE CELL PROTEOMIC SCREEN REVEALS THE PHENOTYPIC AND FUNCTIONAL LANDSCAPE OF THE HUMAN LYMPHO-MYELOID DIFFERENTIATION AXIS Kim, Y., Caleron, A., Glass, D., Tsai, A., Favaro, P., Baskar, R., Hartmann, F., Greenleaf, W., Bendall, S. ELSEVIER SCIENCE INC. 2020: S33
  • The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P., Nawy, T., Hupalowska, A., Rood, J. E., Ashenberg, O., Cerami, E., Coffey, R. J., Demir, E., Ding, L., Esplin, E. D., Ford, J. M., Goecks, J., Ghosh, S., Gray, J. W., Guinney, J., Hanlon, S. E., Hughes, S. K., Hwang, E. S., Iacobuzio-Donahue, C. A., Jane-Valbuena, J., Johnson, B. E., Lau, K. S., Lively, T., Mazzilli, S. A., Pe'er, D., Santagata, S., Shalek, A. K., Schapiro, D., Snyder, M. P., Sorger, P. K., Spira, A. E., Srivastava, S., Tan, K., West, R. B., Williams, E. H., Human Tumor Atlas Network, Aberle, D., Achilefu, S. I., Ademuyiwa, F. O., Adey, A. C., Aft, R. L., Agarwal, R., Aguilar, R. A., Alikarami, F., Allaj, V., Amos, C., Anders, R. A., Angelo, M. R., Anton, K., Ashenberg, O., Aster, J. C., Babur, O., Bahmani, A., Balsubramani, A., Barrett, D., Beane, J., Bender, D. E., Bernt, K., Berry, L., Betts, C. B., Bletz, J., Blise, K., Boire, A., Boland, G., Borowsky, A., Bosse, K., Bott, M., Boyden, E., Brooks, J., Bueno, R., Burlingame, E. A., Cai, Q., Campbell, J., Caravan, W., Cerami, E., Chaib, H., Chan, J. M., Chang, Y. H., Chatterjee, D., Chaudhary, O., Chen, A. A., Chen, B., Chen, C., Chen, C., Chen, F., Chen, Y., Chheda, M. G., Chin, K., Chiu, R., Chu, S., Chuaqui, R., Chun, J., Cisneros, L., Coffey, R. J., Colditz, G. A., Cole, K., Collins, N., Contrepois, K., Coussens, L. M., Creason, A. L., Crichton, D., Curtis, C., Davidsen, T., Davies, S. R., de Bruijn, I., Dellostritto, L., De Marzo, A., Demir, E., DeNardo, D. G., Diep, D., Ding, L., Diskin, S., Doan, X., Drewes, J., Dubinett, S., Dyer, M., Egger, J., Eng, J., Engelhardt, B., Erwin, G., Esplin, E. D., Esserman, L., Felmeister, A., Feiler, H. S., Fields, R. C., Fisher, S., Flaherty, K., Flournoy, J., Ford, J. M., Fortunato, A., Frangieh, A., Frye, J. L., Fulton, R. S., Galipeau, D., Gan, S., Gao, J., Gao, L., Gao, P., Gao, V. R., Geiger, T., George, A., Getz, G., Ghosh, S., Giannakis, M., Gibbs, D. L., Gillanders, W. E., Goecks, J., Goedegebuure, S. P., Gould, A., Gowers, K., Gray, J. W., Greenleaf, W., Gresham, J., Guerriero, J. L., Guha, T. K., Guimaraes, A. R., Guinney, J., Gutman, D., Hacohen, N., Hanlon, S., Hansen, C. R., Harismendy, O., Harris, K. A., Hata, A., Hayashi, A., Heiser, C., Helvie, K., Herndon, J. M., Hirst, G., Hodi, F., Hollmann, T., Horning, A., Hsieh, J. J., Hughes, S., Huh, W. J., Hunger, S., Hwang, S. E., Iacobuzio-Donahue, C. A., Ijaz, H., Izar, B., Jacobson, C. A., Janes, S., Jane-Valbuena, J., Jayasinghe, R. G., Jiang, L., Johnson, B. E., Johnson, B., Ju, T., Kadara, H., Kaestner, K., Kagan, J., Kalinke, L., Keith, R., Khan, A., Kibbe, W., Kim, A. H., Kim, E., Kim, J., Kolodzie, A., Kopytra, M., Kotler, E., Krueger, R., Krysan, K., Kundaje, A., Ladabaum, U., Lake, B. B., Lam, H., Laquindanum, R., Lau, K. S., Laughney, A. M., Lee, H., Lenburg, M., Leonard, C., Leshchiner, I., Levy, R., Li, J., Lian, C. G., Lim, K., Lin, J., Lin, Y., Liu, Q., Liu, R., Lively, T., Longabaugh, W. J., Longacre, T., Ma, C. X., Macedonia, M. C., Madison, T., Maher, C. A., Maitra, A., Makinen, N., Makowski, D., Maley, C., Maliga, Z., Mallo, D., Maris, J., Markham, N., Marks, J., Martinez, D., Mashl, R. J., Masilionais, I., Mason, J., Massague, J., Massion, P., Mattar, M., Mazurchuk, R., Mazutis, L., Mazzilli, S. A., McKinley, E. T., McMichael, J. F., Merrick, D., Meyerson, M., Miessner, J. R., Mills, G. B., Mills, M., Mondal, S. B., Mori, M., Mori, Y., Moses, E., Mosse, Y., Muhlich, J. L., Murphy, G. F., Navin, N. E., Nawy, T., Nederlof, M., Ness, R., Nevins, S., Nikolov, M., Nirmal, A. J., Nolan, G., Novikov, E., Oberdoerffer, P., O'Connell, B., Offin, M., Oh, S. T., Olson, A., Ooms, A., Ossandon, M., Owzar, K., Parmar, S., Patel, T., Patti, G. J., Pe'er, D., Pe'er, I., Peng, T., Persson, D., Petty, M., Pfister, H., Polyak, K., Pourfarhangi, K., Puram, S. V., Qiu, Q., Quintanal-Villalonga, A., Raj, A., Ramirez-Solano, M., Rashid, R., Reeb, A. N., Regev, A., Reid, M., Resnick, A., Reynolds, S. M., Riesterer, J. L., Rodig, S., Roland, J. T., Rosenfield, S., Rotem, A., Roy, S., Rozenblatt-Rosen, O., Rudin, C. M., Ryser, M. D., Santagata, S., Santi-Vicini, M., Sato, K., Schapiro, D., Schrag, D., Schultz, N., Sears, C. L., Sears, R. C., Sen, S., Sen, T., Shalek, A., Sheng, J., Sheng, Q., Shoghi, K. I., Shrubsole, M. J., Shyr, Y., Sibley, A. B., Siex, K., Simmons, A. J., Singer, D. S., Sivagnanam, S., Slyper, M., Snyder, M. P., Sokolov, A., Song, S., Sorger, P. K., Southard-Smith, A., Spira, A., Srivastava, S., Stein, J., Storm, P., Stover, E., Strand, S. H., Su, T., Sudar, D., Sullivan, R., Surrey, L., Suva, M., Tan, K., Terekhanova, N. V., Ternes, L., Thammavong, L., Thibault, G., Thomas, G. V., Thorsson, V., Todres, E., Tran, L., Tyler, M., Uzun, Y., Vachani, A., Van Allen, E., Vandekar, S., Veis, D. J., Vigneau, S., Vossough, A., Waanders, A., Wagle, N., Wang, L., Wendl, M. C., West, R., Williams, E. H., Wu, C., Wu, H., Wu, H., Wyczalkowski, M. A., Xie, Y., Yang, X., Yapp, C., Yu, W., Yuan, Y., Zhang, D., Zhang, K., Zhang, M., Zhang, N., Zhang, Y., Zhao, Y., Zhou, D. C., Zhou, Z., Zhu, H., Zhu, Q., Zhu, X., Zhu, Y., Zhuang, X. 2020; 181 (2): 236–49

    Abstract

    Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.

    View details for DOI 10.1016/j.cell.2020.03.053

    View details for PubMedID 32302568

  • Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nature methods Shipony, Z., Marinov, G. K., Swaffer, M. P., Sinnott-Armstrong, N. A., Skotheim, J. M., Kundaje, A., Greenleaf, W. J. 2020

    Abstract

    Mapping open chromatin regions has emerged as a widely used tool for identifying active regulatory elements in eukaryotes. However, existing approaches, limited by reliance on DNA fragmentation and short-read sequencing, cannot provide information about large-scale chromatin states or reveal coordination between the states of distal regulatory elements. We have developed a method for profiling the accessibility of individual chromatin fibers, a single-molecule long-read accessible chromatin mapping sequencing assay (SMAC-seq), enabling the simultaneous, high-resolution, single-molecule assessment of chromatin states at multikilobase length scales. Our strategy is based on combining the preferential methylation of open chromatin regions by DNA methyltransferases with low sequence specificity, in this case EcoGII, an N6-methyladenosine (m6A) methyltransferase, and the ability of nanopore sequencing to directly read DNA modifications. We demonstrate that aggregate SMAC-seq signals match bulk-level accessibility measurements, observe single-molecule nucleosome and transcription factor protection footprints, and quantify the correlation between chromatin states of distal genomic elements.

    View details for DOI 10.1038/s41592-019-0730-2

    View details for PubMedID 32042188

  • Chromatin accessibility dynamics in a model of human forebrain development. Science (New York, N.Y.) Trevino, A. E., Sinnott-Armstrong, N. n., Andersen, J. n., Yoon, S. J., Huber, N. n., Pritchard, J. K., Chang, H. Y., Greenleaf, W. J., Pașca, S. P. 2020; 367 (6476)

    Abstract

    Forebrain development is characterized by highly synchronized cellular processes, which, if perturbed, can cause disease. To chart the regulatory activity underlying these events, we generated a map of accessible chromatin in human three-dimensional forebrain organoids. To capture corticogenesis, we sampled glial and neuronal lineages from dorsal or ventral forebrain organoids over 20 months in vitro. Active chromatin regions identified in human primary brain tissue were observed in organoids at different developmental stages. We used this resource to map genetic risk for disease and to explore evolutionary conservation. Moreover, we integrated chromatin accessibility with transcriptomics to identify putative enhancer-gene linkages and transcription factors that regulate human corticogenesis. Overall, this platform brings insights into gene-regulatory dynamics at previously inaccessible stages of human forebrain development, including signatures of neuropsychiatric disorders.

    View details for DOI 10.1126/science.aay1645

    View details for PubMedID 31974223

  • Comprehensive sequence-to-function mapping of cofactor-dependent RNA catalysis in the glmS ribozyme. Nature communications Andreasson, J. O., Savinov, A. n., Block, S. M., Greenleaf, W. J. 2020; 11 (1): 1663

    Abstract

    Massively parallel, quantitative measurements of biomolecular activity across sequence space can greatly expand our understanding of RNA sequence-function relationships. We report the development of an RNA-array assay to perform such measurements and its application to a model RNA: the core glmS ribozyme riboswitch, which performs a ligand-dependent self-cleavage reaction. We measure the cleavage rates for all possible single and double mutants of this ribozyme across a series of ligand concentrations, determining kcat and KM values for active variants. These systematic measurements suggest that evolutionary conservation in the consensus sequence is driven by maintenance of the cleavage rate. Analysis of double-mutant rates and associated mutational interactions produces a structural and functional mapping of the ribozyme sequence, revealing the catalytic consequences of specific tertiary interactions, and allowing us to infer structural rearrangements that permit certain sequence variants to maintain activity.

    View details for DOI 10.1038/s41467-020-15540-1

    View details for PubMedID 32245964

  • Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nature biotechnology Granja, J. M., Klemm, S., McGinnis, L. M., Kathiria, A. S., Mezger, A., Corces, M. R., Parks, B., Gars, E., Liedtke, M., Zheng, G. X., Chang, H. Y., Majeti, R., Greenleaf, W. J. 2019

    Abstract

    Identifying the causes of human diseases requires deconvolution of abnormal molecular phenotypes spanning DNA accessibility, gene expression and protein abundance1-3. We present a single-cell framework that integrates highly multiplexed protein quantification, transcriptome profiling and analysis of chromatin accessibility. Using this approach, we establish a normal epigenetic baseline for healthy blood development, which we then use to deconvolve aberrant molecular features within blood from patients with mixed-phenotype acute leukemia4,5. Despite widespread epigenetic heterogeneity within the patient cohort, we observe common malignant signatures across patients as well as patient-specific regulatory features that are shared across phenotypic compartments of individual patients. Integrative analysis of transcriptomic and chromatin-accessibility maps identified 91,601 putative peak-to-gene linkages and transcription factors that regulate leukemia-specific genes, such as RUNX1-linked regulatory elements proximal to the marker gene CD69. These results demonstrate how integrative, multiomic analysis of single cells within the framework of normal development can reveal both distinct and shared molecular mechanisms of disease from patient samples.

    View details for DOI 10.1038/s41587-019-0332-7

    View details for PubMedID 31792411

  • Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis. Cell Hilgendorf, K. I., Johnson, C. T., Mezger, A., Rice, S. L., Norris, A. M., Demeter, J., Greenleaf, W. J., Reiter, J. F., Kopinke, D., Jackson, P. K. 2019

    Abstract

    Adult mesenchymal stem cells, including preadipocytes, possess a cellular sensory organelle called the primary cilium. Ciliated preadipocytes abundantly populate perivascular compartments in fat and are activated by a high-fat diet. Here, we sought to understand whether preadipocytes use their cilia to sense and respond to external cues to remodel white adipose tissue. Abolishing preadipocyte cilia in mice severely impairs white adipose tissue expansion. We discover that TULP3-dependent ciliary localization of the omega-3 fatty acid receptor FFAR4/GPR120 promotes adipogenesis. FFAR4 agonists and omega-3 fatty acids, but not saturated fatty acids, trigger mitosis and adipogenesis by rapidly activating cAMP production inside cilia. Ciliary cAMP activates EPAC signaling, CTCF-dependent chromatin remodeling, and transcriptional activation of PPARgamma and CEBPalpha to initiate adipogenesis. We propose that dietary omega-3 fatty acids selectively drive expansion of adipocyte numbers to produce new fatcells and store saturated fatty acids, enabling homeostasis of healthy fat tissue.

    View details for DOI 10.1016/j.cell.2019.11.005

    View details for PubMedID 31761534

  • The human body at cellular resolution: the NIH Human Biomolecular Atlas Program NATURE Snyder, M. P., Lin, S., Posgai, A., Atkinson, M., Regev, A., Rood, J., Rozenblatt-Rosen, O., Gaffney, L., Hupalowska, A., Satija, R., Gehlenborg, N., Shendure, J., Laskin, J., Harbury, P., Nystrom, N. A., Silverstein, J. C., Bar-Joseph, Z., Zhang, K., Borner, K., Lin, Y., Conroy, R., Procaccini, D., Roy, A. L., Pillai, A., Brown, M., Galis, Z. S., Cai, L., Shendure, J., Trapnell, C., Lin, S., Jackson, D., Snyder, M. P., Nolan, G., Greenleaf, W., Lin, Y., Plevritis, S., Ahadi, S., Nevins, S. A., Lee, H., Schuerch, C., Black, S., Venkataraaman, V., Esplin, E., Horning, A., Bahmani, A., Zhang, K., Sun, X., Jain, S., Hagood, J., Pryhuber, G., Kharchenko, P., Atkinson, M., Bodenmiller, B., Brusko, T., Clare-Salzler, M., Nick, H., Otto, K., Posgai, A., Wasserfall, C., Jorgensen, M., Brusko, M., Maffioletti, S., Caprioli, R. M., Spraggins, J. M., Gutierrez, D., Patterson, N., Neumann, E. K., Harris, R., deCaestecker, M., Fogo, A. B., van de Plas, R., Lau, K., Cai, L., Yuan, G., Zhu, Q., Dries, R., Yin, P., Saka, S. K., Kishi, J. Y., Wang, Y., Goldaracena, I., Laskin, J., Ye, D., Burnum-Johnson, K. E., Piehowski, P. D., Ansong, C., Zhu, Y., Harbury, P., Desai, T., Mulye, J., Chou, P., Nagendran, M., Bar-Joseph, Z., Teichmann, S. A., Paten, B., Murphy, R. F., Ma, J., Kiselev, V., Kingsford, C., Ricarte, A., Keays, M., Akoju, S. A., Ruffalo, M., Gehlenborg, N., Kharchenko, P., Vella, M., McCallum, C., Borner, K., Cross, L. E., Friedman, S. H., Heiland, R., Herr, B., Macklin, P., Quardokus, E. M., Record, L., Sluka, J. P., Weber, G. M., Nystrom, N. A., Silverstein, J. C., Blood, P. D., Ropelewski, A. J., Shirey, W. E., Scibek, R. M., Mabee, P., Lenhardt, W., Robasky, K., Michailidis, S., Satija, R., Marioni, J., Regev, A., Butler, A., Stuart, T., Fisher, E., Ghazanfar, S., Rood, J., Gaffney, L., Eraslan, G., Biancalani, T., Vaishnav, E. D., Conroy, R., Procaccini, D., Roy, A., Pillai, A., Brown, M., Galis, Z., Srinivas, P., Pawlyk, A., Sechi, S., Wilder, E., Anderson, J., HuBMAP Consortium 2019; 574 (7777): 187–92

    Abstract

    Transformative technologies are enabling the construction of three-dimensional maps of tissues with unprecedented spatial and molecular resolution. Over the next seven years, the NIH Common Fund Human Biomolecular Atlas Program (HuBMAP) intends to develop a widely accessible framework for comprehensively mapping the human body at single-cell resolution by supporting technology development, data acquisition, and detailed spatial mapping. HuBMAP will integrate its efforts with other funding agencies, programs, consortia, and the biomedical research community at large towards the shared vision of a comprehensive, accessible three-dimensional molecular and cellular atlas of the human body, in health and under various disease conditions.

    View details for DOI 10.1038/s41586-019-1629-x

    View details for Web of Science ID 000489784200035

    View details for PubMedID 31597973

    View details for PubMedCentralID PMC6800388

  • Linking RNA Sequence, Structure, and Function on Massively Parallel High-Throughput Sequencers COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY Denny, S. K., Greenleaf, W. J. 2019; 11 (10)
  • Landscape of stimulation-responsive chromatin across diverse human immune cells. Nature genetics Calderon, D., Nguyen, M. L., Mezger, A., Kathiria, A., Muller, F., Nguyen, V., Lescano, N., Wu, B., Trombetta, J., Ribado, J. V., Knowles, D. A., Gao, Z., Blaeschke, F., Parent, A. V., Burt, T. D., Anderson, M. S., Criswell, L. A., Greenleaf, W. J., Marson, A., Pritchard, J. K. 2019

    Abstract

    A hallmark of the immune system is the interplay among specialized cell types transitioning between resting and stimulated states. The gene regulatory landscape of this dynamic system has not been fully characterized in human cells. Here we collected assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing data under resting and stimulated conditions for up to 32 immune cell populations. Stimulation caused widespread chromatin remodeling, including response elements shared between stimulated B and T cells. Furthermore, several autoimmune traits showed significant heritability in stimulation-responsive elements from distinct cell types, highlighting the importance of these cell states in autoimmunity. Allele-specific read mapping identified variants that alter chromatin accessibility in particular conditions, allowing us to observe evidence of function for a candidate causal variant that is undetected by existing large-scale studies in resting cells. Our results provide a resource of chromatin dynamics and highlight the need to characterize the effects of genetic variation in stimulated cells.

    View details for DOI 10.1038/s41588-019-0505-9

    View details for PubMedID 31570894

  • Automated Design of Diverse Stand-Alone Riboswitches ACS SYNTHETIC BIOLOGY Wu, M. J., Andreasson, J. L., Kladwang, W., Greenleaf, W., Das, R. 2019; 8 (8): 1838–46

    Abstract

    Riboswitches that couple binding of ligands to conformational changes offer sensors and control elements for RNA synthetic biology and medical biotechnology. However, design of these riboswitches has required expert intuition or software specialized to transcription or translation outputs; design has been particularly challenging for applications in which the riboswitch output cannot be amplified by other molecular machinery. We present a fully automated design method called RiboLogic for such "stand-alone" riboswitches and test it via high-throughput experiments on 2875 molecules using RNA-MaP (RNA on a massively parallel array) technology. These molecules consistently modulate their affinity to the MS2 bacteriophage coat protein upon binding of flavin mononucleotide, tryptophan, theophylline, and microRNA miR-208a, achieving activation ratios of up to 20 and significantly better performance than control designs. By encompassing a wide diversity of stand-alone switches and highly quantitative data, the resulting ribologic-solves experimental data set provides a rich resource for further improvement of riboswitch models and design methods.

    View details for DOI 10.1021/acssynbio.9b00142

    View details for Web of Science ID 000481979300016

    View details for PubMedID 31298841

    View details for PubMedCentralID PMC6703183

  • Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proceedings of the National Academy of Sciences of the United States of America Jadhav, R. R., Im, S. J., Hu, B., Hashimoto, M., Li, P., Lin, J., Leonard, W. J., Greenleaf, W. J., Ahmed, R., Goronzy, J. J. 2019

    Abstract

    We have recently defined a novel population of PD-1 (programmed cell death 1)+ TCF1 (T cell factor 1)+ virus-specific CD8 T cells that function as resource cells during chronic LCMV infection and provide the proliferative burst seen after PD-1 blockade. Such CD8 T cells have been found in other chronic infections and also in cancer in mice and humans. These CD8 T cells exhibit stem-like properties undergoing self-renewal and also differentiating into the terminally exhausted CD8 T cells. Here we compared the epigenetic signature of stem-like CD8 T cells with exhausted CD8 T cells. ATAC-seq analysis showed that stem-like CD8 T cells had a unique signature implicating activity of HMG (TCF) and RHD (NF-kappaB) transcription factor family members in contrast to higher accessibility to ETS and RUNX motifs in exhausted CD8 T cells. In addition, regulatory regions of the transcription factors Tcf7 and Id3 were more accessible in stem-like cells whereas Prdm1 and Id2 were more accessible in exhausted CD8 T cells. We also compared the epigenetic signatures of the 2 CD8 T cell subsets from chronically infected mice with effector and memory CD8 T cells generated after an acute LCMV infection. Both CD8 T cell subsets generated during chronic infection were strikingly different from CD8 T cell subsets from acute infection. Interestingly, the stem-like CD8 T cell subset from chronic infection, despite sharing key functional properties with memory CD8 T cells, had a very distinct epigenetic program. These results show that the chronic stem-like CD8 T cell program represents a specific adaptation of the T cell response to persistent antigenic stimulation.

    View details for DOI 10.1073/pnas.1903520116

    View details for PubMedID 31227606

  • Demonstration of protein cooperativity mediated by RNA structure using the human protein PUM2 RNA Becker, W. R., Jarmoskaite, I., Vaidyanathan, P. P., Greenleaf, W. J., Herschlag, D. 2019; 25 (6): 702–12
  • Cell cycle dynamics of human pluripotent stem cells primed for differentiation. Stem cells (Dayton, Ohio) Shcherbina, A., Li, J., Narayanan, C., Greenleaf, W., Kundaje, A., Chetty, S. 2019

    Abstract

    Understanding the molecular properties of the cell cycle of human pluripotent stem cells (hPSCs) is critical for effectively promoting differentiation. Here, we use the Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI) system adapted into hPSCs and perform RNA-sequencing on cell cycle sorted hPSCs primed and unprimed for differentiation. Gene expression patterns of signaling factors and developmental regulators change in a cell cycle-specific manner in cells primed for differentiation without altering genes associated with pluripotency. Furthermore, we identify an important role for PI3K signaling in regulating the early transitory states of hPSCs toward differentiation. SIGNIFICANCE STATEMENT: Generating differentiated cell types from human pluripotent stem cells (hPSCs) holds great therapeutic promise, but has proven to be challenging in practice. The cell cycle may play an important role in enhancing the differentiation potential of hPSCs. Here, the authors track and isolate hPSCs from different phases of the cell cycle and perform RNA-sequencing. The data show that gene expression patterns of signaling factors and developmental regulators change in a cell cycle-specific manner as hPSCs transition toward differentiation and highlight an important role for PI3K signaling in regulating these early transitory states. © AlphaMed Press 2019.

    View details for DOI 10.1002/stem.3041

    View details for PubMedID 31135093

  • HiChIRP reveals RNA-associated chromosome conformation. Nature methods Mumbach, M. R., Granja, J. M., Flynn, R. A., Roake, C. M., Satpathy, A. T., Rubin, A. J., Qi, Y., Jiang, Z., Shams, S., Louie, B. H., Guo, J. K., Gennert, D. G., Corces, M. R., Khavari, P. A., Atianand, M. K., Artandi, S. E., Fitzgerald, K. A., Greenleaf, W. J., Chang, H. Y. 2019

    Abstract

    Modular domains of long non-coding RNAs can serve as scaffolds to bring distant regions of the linear genome into spatial proximity. Here, we present HiChIRP, a method leveraging bio-orthogonal chemistry and optimized chromosome conformation capture conditions, which enables interrogation of chromatin architecture focused around a specific RNA of interest down to approximately ten copies per cell. HiChIRP of three nuclear RNAs reveals insights into promoter interactions (7SK), telomere biology (telomerase RNA component) and inflammatory gene regulation (lincRNA-EPS).

    View details for DOI 10.1038/s41592-019-0407-x

    View details for PubMedID 31133759

  • Blind tests of RNA-protein binding affinity prediction. Proceedings of the National Academy of Sciences of the United States of America Kappel, K., Jarmoskaite, I., Vaidyanathan, P. P., Greenleaf, W. J., Herschlag, D., Das, R. 2019

    Abstract

    Interactions between RNA and proteins are pervasive in biology, driving fundamental processes such as protein translation and participating in the regulation of gene expression. Modeling the energies of RNA-protein interactions is therefore critical for understanding and repurposing living systems but has been hindered by complexities unique to RNA-protein binding. Here, we bring together several advances to complete a calculation framework for RNA-protein binding affinities, including a unified free energy function for bound complexes, automated Rosetta modeling of mutations, and use of secondary structure-based energetic calculations to model unbound RNA states. The resulting Rosetta-Vienna RNP-DeltaDeltaG method achieves root-mean-squared errors (RMSEs) of 1.3 kcal/mol on high-throughput MS2 coat protein-RNA measurements and 1.5 kcal/mol on an independent test set involving the signal recognition particle, human U1A, PUM1, and FOX-1. As a stringent test, the method achieves RMSE accuracy of 1.4 kcal/mol in blind predictions of hundreds of human PUM2-RNA relative binding affinities. Overall, these RMSE accuracies are significantly better than those attained by prior structure-based approaches applied to the same systems. Importantly, Rosetta-Vienna RNP-DeltaDeltaG establishes a framework for further improvements in modeling RNA-protein binding that can be tested by prospective high-throughput measurements on new systems.

    View details for PubMedID 30962376

  • Demonstration of Protein Cooperativity Mediated by RNA Structure Using the Human Protein PUM2. RNA (New York, N.Y.) Becker, W. R., Jarmoskaite, I., Vaidyanathan, P. P., Greenleaf, W. J., Herschlag, D. 2019

    Abstract

    Post-translational gene regulation requires a complex network of RNA/protein interactions. Cooperativity, which tunes response sensitivities, originates from protein-protein interactions in many systems. For RNA binding proteins, cooperativity can also be mediated through RNA structure. RNA structural cooperativity (RSC) arises when binding of one protein induces a redistribution of RNA conformational states that enhance access (positive cooperativity) or block access (negative cooperativity) to additional binding sites. As RSC does not require direct protein-protein interactions, it allows cooperativity to be tuned for individual RNAs, via alterations in sequence that alter structural stability. Given the potential importance of this mechanism of control and our desire to quantitatively dissect features that underlie physiological regulation, we developed a statistical mechanical framework for RSC, and tested this model by performing equilibrium binding measurements of the human PUF family protein PUM2. Using 68 RNAs that contain 2-5 PUM2 binding sites and RNA structures of varying stabilities, we observed a range of structure-dependent cooperative behaviors. To test our ability to account for this cooperativity with known physical constants, we used PUM2 affinity and nearest-neighbor RNA secondary structure predictions. Our model gave qualitative agreement for our disparate set of 68 RNAs across two temperatures, but quantitative deviations arise from overestimation of RNA structural stability. Our results demonstrate cooperativity mediated by RNA structure and underscore the power of quantitative stepwise experimental evaluation of mechanisms and computational tools.

    View details for PubMedID 30914482

  • Large-Scale, Quantitative Protein Assays on a High-Throughput DNA Sequencing Chip. Molecular cell Layton, C. J., McMahon, P. L., Greenleaf, W. J. 2019; 73 (5): 1075

    Abstract

    High-throughput DNA sequencing techniques haveenabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3* 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56* 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interactionnetworks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.

    View details for PubMedID 30849388

  • Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules CELL STEM CELL Zviran, A., Mor, N., Rais, Y., Gingold, H., Peles, S., Chomsky, E., Viukov, S., Buenrostro, J. D., Scognamiglio, R., Weinberger, L., Manor, Y. S., Krupalnik, V., Zerbib, M., Hezroni, H., Jaitin, D., Larastiaso, D., Gilad, S., Benjamin, S., Gafni, O., Mousa, A., Ayyash, M., Sheban, D., Bayerl, J., Aguilera-Castrejon, A., Massarwa, R., Maza, I., Hanna, S., Stelzer, Y., Ulitsky, I., Greenleaf, W. J., Tanay, A., Trumpp, A., Amit, I., Pilpel, Y., Novershtern, N., Hanna, J. H. 2019; 24 (2): 328-+
  • Chromatin accessibility and the regulatory epigenome. Nature reviews. Genetics Klemm, S. L., Shipony, Z., Greenleaf, W. J. 2019

    Abstract

    Physical access to DNA is a highly dynamic property of chromatin that plays an essential role in establishing and maintaining cellular identity. The organization of accessible chromatin across the genome reflects a network of permissible physical interactions through which enhancers, promoters, insulators and chromatin-binding factors cooperatively regulate gene expression. This landscape of accessibility changes dynamically in response to both external stimuli and developmental cues, and emerging evidence suggests that homeostatic maintenance of accessibility is itself dynamically regulated through a competitive interplay between chromatin-binding factors and nucleosomes. In this Review, we examine how the accessible genome is measured and explore the role of transcription factors in initiating accessibility remodelling; our goal is to illustrate how chromatin accessibility defines regulatory elements within the genome and how these epigenetic features are dynamically established to control gene expression.

    View details for PubMedID 30675018

  • A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Molecular cell Jarmoskaite, I. n., Denny, S. K., Vaidyanathan, P. P., Becker, W. R., Andreasson, J. O., Layton, C. J., Kappel, K. n., Shivashankar, V. n., Sreenivasan, R. n., Das, R. n., Greenleaf, W. J., Herschlag, D. n. 2019

    Abstract

    High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.

    View details for PubMedID 31078383

  • OPEN CHROMATIN PROFILING IDENTIFIES FUNCTIONAL NONCODING RISK VARIANTS IN HUMAN IPSC MODEL OF PSYCHIATRIC DISORDERS Duan, J., Forrest, M., Zhang, H., Moy, W., McGowan, H., Leites, C., Shi, J., Sanders, A., Greenleaf, W., Cowan, C., Pang, Z., Gejman, P., Penzes, P. ELSEVIER SCIENCE BV. 2019: S765
  • MECHANISMS DRIVING ALTERED V Delta 2+Gamma Delta T CELL FUNCTION DURING RECURRENT MALARIA INFECTION Dantzler, K. W., Klemm, S., Polidoro, R., Rao, A., Junquiera, C., Dvorak, M., Rek, J., Kamya, M., Cheung, P., Kuo, A., Dorsey, G., Feeney, M., Lieberman, J., Khatri, P., Greenleaf, W., Jagannathan, P. AMER SOC TROP MED & HYGIENE. 2019: 111
  • High-Throughput Analysis Reveals Rules for Target RNA Binding and Cleavage by AGO2. Molecular cell Becker, W. R., Ober-Reynolds, B. n., Jouravleva, K. n., Jolly, S. M., Zamore, P. D., Greenleaf, W. J. 2019

    Abstract

    Argonaute proteins loaded with microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC), which represses target RNA expression. Predicting the biological targets, specificity, and efficiency of both miRNAs and siRNAs has been hamstrung by an incomplete understanding of the sequence determinants of RISC binding and cleavage. We applied high-throughput methods to measure the association kinetics, equilibrium binding energies, and single-turnover cleavage rates of RISC. We find that RISC readily tolerates insertions of up to 7 nt in its target opposite the central region of the guide. Our data uncover specific guide:target mismatches that enhance the rate of target cleavage, suggesting novel siRNA design strategies. Using these data, we derive quantitative models for RISC binding and target cleavage and show that our in vitro measurements and models predict knockdown in an engineered cellular system.

    View details for DOI 10.1016/j.molcel.2019.06.012

    View details for PubMedID 31324449

  • Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nature communications Tycko, J. n., Wainberg, M. n., Marinov, G. K., Ursu, O. n., Hess, G. T., Ego, B. K., Aradhana, n. n., Li, A. n., Truong, A. n., Trevino, A. E., Spees, K. n., Yao, D. n., Kaplow, I. M., Greenside, P. G., Morgens, D. W., Phanstiel, D. H., Snyder, M. P., Bintu, L. n., Greenleaf, W. J., Kundaje, A. n., Bassik, M. C. 2019; 10 (1): 4063

    Abstract

    Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor. Rather, these sgRNAs had high off-target activity that, while only weakly correlated with absolute off-target site number, could be predicted by the recently developed GuideScan specificity score. Screens conducted in parallel with CRISPRi/a, which do not induce double-stranded DNA breaks, revealed that a distinct set of off-targets also cause strong confounding fitness effects with these epigenome-editing tools. Promisingly, filtering of CRISPRi libraries using GuideScan specificity scores removed these confounded sgRNAs and enabled identification of essential regulatory elements.

    View details for DOI 10.1038/s41467-019-11955-7

    View details for PubMedID 31492858

  • Satb1 integrates DNA binding site geometry and torsional stress to differentially target nucleosome-dense regions. Nature communications Ghosh, R. P., Shi, Q. n., Yang, L. n., Reddick, M. P., Nikitina, T. n., Zhurkin, V. B., Fordyce, P. n., Stasevich, T. J., Chang, H. Y., Greenleaf, W. J., Liphardt, J. T. 2019; 10 (1): 3221

    Abstract

    The Satb1 genome organizer regulates multiple cellular and developmental processes. It is not yet clear how Satb1 selects different sets of targets throughout the genome. Here we have used live-cell single molecule imaging and deep sequencing to assess determinants of Satb1 binding-site selectivity. We have found that Satb1 preferentially targets nucleosome-dense regions and can directly bind consensus motifs within nucleosomes. Some genomic regions harbor multiple, regularly spaced Satb1 binding motifs (typical separation ~1 turn of the DNA helix) characterized by highly cooperative binding. The Satb1 homeodomain is dispensable for high affinity binding but is essential for specificity. Finally, we find that Satb1-DNA interactions are mechanosensitive. Increasing negative torsional stress in DNA enhances Satb1 binding and Satb1 stabilizes base unpairing regions against melting by molecular machines. The ability of Satb1 to control diverse biological programs may reflect its ability to combinatorially use multiple site selection criteria.

    View details for DOI 10.1038/s41467-019-11118-8

    View details for PubMedID 31324780

  • Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nature biotechnology Satpathy, A. T., Granja, J. M., Yost, K. E., Qi, Y. n., Meschi, F. n., McDermott, G. P., Olsen, B. N., Mumbach, M. R., Pierce, S. E., Corces, M. R., Shah, P. n., Bell, J. C., Jhutty, D. n., Nemec, C. M., Wang, J. n., Wang, L. n., Yin, Y. n., Giresi, P. G., Chang, A. L., Zheng, G. X., Greenleaf, W. J., Chang, H. Y. 2019; 37 (8): 925–36

    Abstract

    Understanding complex tissues requires single-cell deconstruction of gene regulation with precision and scale. Here, we assess the performance of a massively parallel droplet-based method for mapping transposase-accessible chromatin in single cells using sequencing (scATAC-seq). We apply scATAC-seq to obtain chromatin profiles of more than 200,000 single cells in human blood and basal cell carcinoma. In blood, application of scATAC-seq enables marker-free identification of cell type-specific cis- and trans-regulatory elements, mapping of disease-associated enhancer activity and reconstruction of trajectories of cellular differentiation. In basal cell carcinoma, application of scATAC-seq reveals regulatory networks in malignant, stromal and immune cells in the tumor microenvironment. Analysis of scATAC-seq profiles from serial tumor biopsies before and after programmed cell death protein 1 blockade identifies chromatin regulators of therapy-responsive T cell subsets and reveals a shared regulatory program that governs intratumoral CD8+ T cell exhaustion and CD4+ T follicular helper cell development. We anticipate that scATAC-seq will enable the unbiased discovery of gene regulatory factors across diverse biological systems.

    View details for DOI 10.1038/s41587-019-0206-z

    View details for PubMedID 31375813

  • Sequence-dependent RNA helix conformational preferences predictably impact tertiary structure formation. Proceedings of the National Academy of Sciences of the United States of America Yesselman, J. D., Denny, S. K., Bisaria, N. n., Herschlag, D. n., Greenleaf, W. J., Das, R. n. 2019

    Abstract

    Structured RNAs and RNA complexes underlie biological processes ranging from control of gene expression to protein translation. Approximately 50% of nucleotides within known structured RNAs are folded into Watson-Crick (WC) base pairs, and sequence changes that preserve these pairs are typically assumed to preserve higher-order RNA structure and binding of macromolecule partners. Here, we report that indirect effects of the helix sequence on RNA tertiary stability are, in fact, significant but are nevertheless predictable from a simple computational model called RNAMake-∆∆G. When tested through the RNA on a massively parallel array (RNA-MaP) experimental platform, blind predictions for >1500 variants of the tectoRNA heterodimer model system achieve high accuracy (rmsd 0.34 and 0.77 kcal/mol for sequence and length changes, respectively). Detailed comparison of predictions to experiments support a microscopic picture of how helix sequence changes subtly modulate conformational fluctuations at each base-pair step, which accumulate to impact RNA tertiary structure stability. Our study reveals a previously overlooked phenomenon in RNA structure formation and provides a framework of computation and experiment for understanding helix conformational preferences and their impact across biological RNA and RNA-protein assemblies.

    View details for DOI 10.1073/pnas.1901530116

    View details for PubMedID 31375637

  • High-resolution mapping of cancer cell networks using co-functional interactions. Molecular systems biology Boyle, E. A., Pritchard, J. K., Greenleaf, W. J. 2018; 14 (12): e8594

    Abstract

    Powerful new technologies for perturbing genetic elements have recently expanded the study of genetic interactions in model systems ranging from yeast to human cell lines. However, technical artifacts can confound signal across genetic screens and limit the immense potential of parallel screening approaches. To address this problem, we devised a novel PCA-based method for correcting genome-wide screening data, bolstering the sensitivity and specificity of detection for genetic interactions. Applying this strategy to a set of 436 whole genome CRISPR screens, we report more than 1.5 million pairs of correlated "co-functional" genes that provide finer-scale information about cell compartments, biological pathways, and protein complexes than traditional gene sets. Lastly, we employed a gene community detection approach to implicate core genes for cancer growth and compress signal from functionally related genes in the same community into a single score. This work establishes new algorithms for probing cancer cell networks and motivates the acquisition of further CRISPR screen data across diverse genotypes and cell types to further resolve complex cellular processes.

    View details for PubMedID 30573688

  • Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks. Cell Rubin, A. J., Parker, K. R., Satpathy, A. T., Qi, Y., Wu, B., Ong, A. J., Mumbach, M. R., Ji, A. L., Kim, D. S., Cho, S. W., Zarnegar, B. J., Greenleaf, W. J., Chang, H. Y., Khavari, P. A. 2018

    Abstract

    Here, we present Perturb-ATAC, a method that combines multiplexed CRISPR interference or knockout with genome-wide chromatin accessibility profiling in single cells based on the simultaneous detection of CRISPR guide RNAs and open chromatin sites by assay of transposase-accessible chromatin with sequencing (ATAC-seq). We applied Perturb-ATAC to transcription factors (TFs), chromatin-modifying factors, and noncoding RNAs (ncRNAs) in 4,300 single cells, encompassing more than 63 genotype-phenotype relationships. Perturb-ATAC in human Blymphocytes uncovered regulators of chromatin accessibility, TF occupancy, and nucleosome positioning and identified a hierarchy of TFs that govern B cell state, variation, and disease-associated cis-regulatory elements. Perturb-ATAC in primary human epidermal cells revealed three sequential modules of cis-elements that specify keratinocyte fate. Combinatorial deletion of all pairs of these TFsuncovered their epistatic relationships and highlighted genomic co-localization as a basis for synergistic interactions. Thus, Perturb-ATAC is a powerful strategy to dissect gene regulatory networks in development and disease.

    View details for PubMedID 30580963

  • Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules. Cell stem cell Zviran, A., Mor, N., Rais, Y., Gingold, H., Peles, S., Chomsky, E., Viukov, S., Buenrostro, J. D., Scognamiglio, R., Weinberger, L., Manor, Y. S., Krupalnik, V., Zerbib, M., Hezroni, H., Jaitin, D. A., Larastiaso, D., Gilad, S., Benjamin, S., Gafni, O., Mousa, A., Ayyash, M., Sheban, D., Bayerl, J., Aguilera-Castrejon, A., Massarwa, R., Maza, I., Hanna, S., Stelzer, Y., Ulitsky, I., Greenleaf, W. J., Tanay, A., Trumpp, A., Amit, I., Pilpel, Y., Novershtern, N., Hanna, J. H. 2018

    Abstract

    The epigenetic dynamics of induced pluripotent stem cell (iPSC) reprogramming in correctly reprogrammed cells at high resolution and throughout the entire process remain largely undefined. Here, we characterize conversion of mouse fibroblasts into iPSCs using Gatad2a-Mbd3/NuRD-depleted and highly efficient reprogramming systems. Unbiased high-resolution profiling of dynamic changes in levels of gene expression, chromatin engagement, DNA accessibility, and DNA methylation were obtained. We identified two distinct and synergistic transcriptional modules that dominate successful reprogramming, which are associated with cell identity and biosynthetic genes. The pluripotency module is governed by dynamic alterations in epigenetic modifications to promoters and binding by Oct4, Sox2, and Klf4, but not Myc. Early DNA demethylation at certain enhancers prospectively marks cells fated to reprogram. Myc activity drives expression of the essential biosynthetic module and is associated with optimized changes in tRNA codon usage. Our functional validations highlight interweaved epigenetic- and Myc-governed essential reconfigurations that rapidly commission and propel deterministic reprogramming toward naive pluripotency.

    View details for PubMedID 30554962

  • Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nature genetics Haney, M. S., Bohlen, C. J., Morgens, D. W., Ousey, J. A., Barkal, A. A., Tsui, C. K., Ego, B. K., Levin, R., Kamber, R. A., Collins, H., Tucker, A., Li, A., Vorselen, D., Labitigan, L., Crane, E., Boyle, E., Jiang, L., Chan, J., Rincon, E., Greenleaf, W. J., Li, B., Snyder, M. P., Weissman, I. L., Theriot, J. A., Collins, S. R., Barres, B. A., Bassik, M. C. 2018

    Abstract

    Phagocytosis is required for a broad range of physiological functions, from pathogen defense to tissue homeostasis, but the mechanisms required for phagocytosis of diverse substrates remain incompletely understood. Here, we developed a rapid magnet-based phenotypic screening strategy, and performed eight genome-wide CRISPR screens in human cells to identify genes regulating phagocytosis of distinct substrates. After validating select hits in focused miniscreens, orthogonal assays and primary human macrophages, we show that (1) the previously uncharacterized gene NHLRC2 is a central player in phagocytosis, regulating RhoA-Rac1 signaling cascades that control actin polymerization and filopodia formation, (2) very-long-chain fatty acids are essential for efficient phagocytosis of certain substrates and (3) the previously uncharacterized Alzheimer's disease-associated gene TM2D3 can preferentially influence uptake of amyloid-beta aggregates. These findings illuminate new regulators and core principles of phagocytosis, and more generally establish an efficient method for unbiased identification of cellular uptake mechanisms across diverse physiological and pathological contexts.

    View details for PubMedID 30397336

  • Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity. Nature communications Chen, X., Litzenburger, U. M., Wei, Y., Schep, A. N., LaGory, E. L., Choudhry, H., Giaccia, A. J., Greenleaf, W. J., Chang, H. Y. 2018; 9 (1): 4590

    Abstract

    Here we introduce Protein-indexed Assay of Transposase Accessible Chromatin with sequencing (Pi-ATAC) that combines single-cell chromatin and proteomic profiling. In conjunction with DNA transposition, the levels of multiple cell surface or intracellular protein epitopes are recorded by index flow cytometry and positions in arrayed microwells, and then subject to molecular barcoding for subsequent pooled analysis. Pi-ATAC simultaneously identifies the epigenomic and proteomic heterogeneity in individual cells. Pi-ATAC reveals a casual link between transcription factor abundance and DNA motif access, and deconvolute cell types and states in the tumor microenvironment in vivo. We identify a dominant role for hypoxia, marked by HIF1alpha protein, in the tumor microvenvironment for shaping the regulome in a subset of epithelial tumor cells.

    View details for PubMedID 30389926

  • Linking RNA Sequence, Structure, and Function on Massively Parallel High-Throughput Sequencers. Cold Spring Harbor perspectives in biology Denny, S. K., Greenleaf, W. J. 2018

    Abstract

    SUMMARYHigh-throughput sequencing methods have revolutionized our ability to catalog the diversity of RNAs and RNA-protein interactions that can exist in our cells. However, the relationship between RNA sequence, structure, and function is enormously complex, demonstrating the need for methods that can provide quantitative thermodynamic and kinetic measurements of macromolecular interaction with RNA, at a scale commensurate with the sequence diversity of RNA. Here, we discuss a class of methods that extend the core functionality of DNA sequencers to enable high-throughput measurements of RNA folding and RNA-protein interactions. Topics discussed include a description of the method and multiple applications to RNA-binding proteins, riboswitch design and engineering, and RNA tertiary structure energetics.

    View details for PubMedID 30322887

  • Intertumoral Heterogeneity in SCLC Is Influenced by the Cell Type of Origin. Cancer discovery Yang, D., Denny, S. K., Greenside, P. G., Chaikovsky, A. C., Brady, J. J., Ouadah, Y., Granja, J. M., Jahchan, N. S., Lim, J. S., Kwok, S., Kong, C. S., Berghoff, A. S., Schmitt, A., Reinhardt, H. C., Park, K., Preusser, M., Kundaje, A., Greenleaf, W. J., Sage, J., Winslow, M. M. 2018

    Abstract

    The extent to which early events shape tumor evolution is largely uncharacterized, even though a better understanding of these early events may help identify key vulnerabilities in advanced tumors. Here, using genetically defined mouse models of small cell lung cancer (SCLC), we uncovered distinct metastatic programs attributable to the cell type of origin. In one model, tumors gain metastatic ability through amplification of the transcription factor NFIB and a widespread increase in chromatin accessibility, whereas in the other model, tumors become metastatic in the absence of NFIB-driven chromatin alterations. Gene-expression and chromatin accessibility analyses identify distinct mechanisms as well as markers predictive of metastatic progression in both groups. Underlying the difference between the two programs was the cell type of origin of the tumors, with NFIB-independent metastases arising from mature neuroendocrine cells. Our findings underscore the importance of the identity of cell type of origin in influencing tumor evolution and metastatic mechanisms.SIGNIFICANCE: We show that SCLC can arise from different cell types of origin, which profoundly influences the eventual genetic and epigenetic changes that enable metastatic progression. Understanding intertumoral heterogeneity in SCLC, and across cancer types, may illuminate mechanisms of tumor progression and uncover how the cell type of origin affects tumor evolution. Cancer Discov; 8(10); 1-16. ©2018 AACR.See related commentary by Pozo et al., p. 1216.

    View details for PubMedID 30228179

  • High-throughput chromatin accessibility profiling at single-cell resolution. Nature communications Mezger, A., Klemm, S., Mann, I., Brower, K., Mir, A., Bostick, M., Farmer, A., Fordyce, P., Linnarsson, S., Greenleaf, W. 2018; 9 (1): 3647

    Abstract

    Here we develop a high-throughput single-cell ATAC-seq (assay for transposition of accessible chromatin) method to measure physical access to DNA in whole cells. Our approach integrates fluorescence imaging and addressable reagent deposition across a massively parallel (5184) nano-well array, yielding a nearly 20-fold improvement in throughput (up to ~1800 cells/chip, 4-5h on-chip processing time) and library preparationcost (~81 per cell) compared to prior microfluidic implementations. We apply this method to measure regulatory variation in peripheral blood mononuclear cells (PBMCs) and show robust, de novo clustering of single cells by hematopoietic cell type.

    View details for PubMedID 30194434

  • Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency CELL STEM CELL Mor, N., Rais, Y., Sheban, D., Peles, S., Aguilera-Castrejon, A., Zviran, A., Elinger, D., Viukov, S., Geula, S., Krupalnik, V., Zerbib, M., Chomsky, E., Lasman, L., Shani, T., Bayerl, J., Gafni, O., Hanna, S., Buenrostro, J. D., Hagai, T., Masika, H., Vainorius, G., Bergman, Y., Greenleaf, W. J., Esteban, M. A., Elling, U., Levin, Y., Massarwa, R., Merbl, Y., Novershtern, N., Hanna, J. H. 2018; 23 (3): 412-+

    Abstract

    Mbd3, a member of nucleosome remodeling and deacetylase (NuRD) co-repressor complex, was previously identified as an inhibitor for deterministic induced pluripotent stem cell (iPSC) reprogramming, where up to 100% of donor cells successfully complete the process. NuRD can assume multiple mutually exclusive conformations, and it remains unclear whether this deterministic phenotype can be attributed to a specific Mbd3/NuRD subcomplex. Moreover, since complete ablation of Mbd3 blocks somatic cell proliferation, we aimed to explore functionally relevant alternative ways to neutralize Mbd3-dependent NuRD activity. We identify Gatad2a, a NuRD-specific subunit, whose complete deletion specifically disrupts Mbd3/NuRD repressive activity on the pluripotency circuitry during iPSC differentiation and reprogramming without ablating somatic cell proliferation. Inhibition of Gatad2a facilitates deterministic murine iPSC reprogramming within 8 days. We validate a distinct molecular axis, Gatad2a-Chd4-Mbd3, within Mbd3/NuRD as being critical for blocking reestablishment of naive pluripotency and further highlight signaling-dependent and post-translational modifications of Mbd3/NuRD that influence its interactions and assembly.

    View details for PubMedID 30122475

  • A Chromatin Basis for Cell Lineage and Disease Risk in the Human Pancreas. Cell systems Arda, H. E., Tsai, J., Rosli, Y. R., Giresi, P., Bottino, R., Greenleaf, W. J., Chang, H. Y., Kim, S. K. 2018

    Abstract

    Understanding the genomic logic that underlies cellular diversity and developmental potential in the human pancreas will accelerate the growth of cell replacement therapies and reveal genetic risk mechanisms in diabetes. Here, we identified and characterized thousands of chromatin regions governing cell-specific gene regulation in human pancreatic endocrine and exocrine lineages, including islet betacells, alpha cells, duct, and acinar cells. Our findings have captured cellular ontogenies at the chromatin level, identified lineage-specific regulators potentially acting on these sites, and uncovered hallmarks of regulatory plasticity between cell types that suggest mechanisms to regenerate beta cells from pancreatic endocrine or exocrine cells. Our work shows that disease risk variants related to pancreas are significantly enriched in these regulatory regions and reveals previously unrecognized links between endocrine and exocrine pancreas in diabetes risk.

    View details for PubMedID 30145115

  • Discovery of stimulation-responsive immune enhancers with CRISPR activation (vol 549, pg 111, 2017) NATURE Simeonov, D. R., Gowen, B. G., Boontanrart, M., Roth, T. L., Gagnon, J. D., Mumbach, M. R., Satpathy, A. T., Lee, Y., Bray, N. L., Chan, A. Y., Lituiev, D. S., Nguyen, M. L., Gate, R. E., Subramaniam, M., Li, Z., Woo, J. M., Mitros, T., Ray, G. J., Curie, G. L., Naddaf, N., Chu, J. S., Ma, H., Boyer, E., Van Gool, F., Huang, H., Liu, R., Tobin, V. R., Schumann, K., Daly, M. J., Farh, K. K., Ansel, K., Ye, C. J., Greenleaf, W. J., Anderson, M. S., Bluestone, J. A., Chang, H. Y., Corn, J. E., Marson, A. 2018; 559 (7715): E13

    Abstract

    In this Letter, analysis of steady-state regulatory T (Treg) cell percentages from Il2ra enhancer deletion (EDEL) and wild-type (WT) mice revealed no differences between them (Extended Data Fig. 9d). This analysis included two mice whose genotypes were incorrectly assigned. Even after correction of the genotypes, no significant differences in Treg cell percentages were seen when data across experimental cohorts were averaged (as was done in Extended Data Fig. 9d). However, if we normalize the corrected data to account for variation among experimental cohorts, a subtle decrease in EDEL Treg cell percentages is revealed and, using the corrected and normalized data, we have redrawn Extended Data Fig. 9d in Supplementary Fig. 1. The Supplementary Information to this Amendment contains the corrected and reanalysed Extended Data Fig. 9d. The sentence "This enhancer deletion (EDEL) strain also had no obvious T cell phenotypes at steady state (Extended Data Fig. 9)." should read: "This enhancer deletion (EDEL) strain had a small decrease in the percentage of Treg cells (Extended Data Fig. 9).". This error does not affect any of the main figures in the Letter or the data from mice with the human autoimmune-associated single nucleotide polymorphism (SNP) knocked in or with a 12-base-pair deletion at the site (12DEL). In addition, we stated in the Methods that we observed consistent immunophenotypes of EDEL mice across three founders, but in fact, we observed consistent phenotypes in mice from two founders. This does not change any of our conclusions and the original Letter has not been corrected.

    View details for PubMedID 29899441

  • High-Throughput Investigation of Diverse Junction Elements in RNA Tertiary Folding. Cell Denny, S. K., Bisaria, N., Yesselman, J. D., Das, R., Herschlag, D., Greenleaf, W. J. 2018

    Abstract

    RNAs fold into defined tertiary structures to function in critical biological processes. While quantitative models can predict RNA secondary structure stability, we are still unable to predict the thermodynamic stability of RNA tertiary structure. Here, we probe conformational preferences of diverse RNA two-way junctions to develop a predictive model for the formation of RNA tertiary structure. We quantitatively measured tertiary assembly energetics of >1,000 of RNA junctions inserted in multiple structural scaffolds to generate a "thermodynamic fingerprint" for each junction. Thermodynamic fingerprints enabled comparison of junction conformational preferences, revealing principles for how sequence influences 3-dimensional conformations. Utilizing fingerprints of junctions with known crystal structures, we generated ensembles for related junctions that predicted their thermodynamic effects on assembly formation. This work reveals sequence-structure-energeticrelationships in RNA, demonstrates the capacity fordiverse compensation strategies within tertiary structures, and provides a path to quantitative modeling of RNA folding energetics based on "ensemble modularity."

    View details for PubMedID 29961580

  • Unsupervised clustering and epigenetic classification of single cells NATURE COMMUNICATIONS Zamanighomi, M., Lin, Z., Daley, T., Chen, X., Duren, Z., Schep, A., Greenleaf, W. J., Wong, W. 2018; 9: 2410

    Abstract

    Characterizing epigenetic heterogeneity at the cellular level is a critical problem in the modern genomics era. Assays such as single cell ATAC-seq (scATAC-seq) offer an opportunity to interrogate cellular level epigenetic heterogeneity through patterns of variability in open chromatin. However, these assays exhibit technical variability that complicates clear classification and cell type identification in heterogeneous populations. We present scABC, an R package for the unsupervised clustering of single-cell epigenetic data, to classify scATAC-seq data and discover regions of open chromatin specific to cell identity.

    View details for PubMedID 29925875

  • Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation CELL Buenrostro, J. D., Corces, M., Lareau, C. A., Wu, B., Schep, A. N., Aryee, M. J., Majeti, R., Chang, H. Y., Greenleaf, W. J. 2018; 173 (6): 1535-+

    Abstract

    Human hematopoiesis involves cellular differentiation of multipotent cells into progressively more lineage-restricted states. While the chromatin accessibility landscape of this process has been explored in defined populations, single-cell regulatory variation has been hidden by ensemble averaging. We collected single-cell chromatin accessibility profiles across 10 populations of immunophenotypically defined human hematopoietic cell types and constructed a chromatin accessibility landscape of human hematopoiesis to characterize differentiation trajectories. We find variation consistent with lineage bias toward different developmental branches in multipotent cell types. We observe heterogeneity within common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs) and develop a strategy to partition GMPs along their differentiation trajectory. Furthermore, we integrated single-cell RNA sequencing (scRNA-seq) data to associate transcription factors to chromatin accessibility changes and regulatory elements to target genes through correlations of expression and regulatory element accessibility. Overall, this work provides a framework for integrative exploration of complex regulatory dynamics in a primary human tissue at single-cell resolution.

    View details for PubMedID 29706549

  • Diff-seq: A high throughput sequencing-based mismatch detection assay for DNA variant enrichment and discovery NUCLEIC ACIDS RESEARCH Aggeli, D., Karas, V. O., Sinnott-Armstrong, N. A., Varghese, V., Shafer, R. W., Greenleaf, W. J., Sherlock, G. 2018; 46 (7)

    Abstract

    Much of the within species genetic variation is in the form of single nucleotide polymorphisms (SNPs), typically detected by whole genome sequencing (WGS) or microarray-based technologies. However, WGS produces mostly uninformative reads that perfectly match the reference, while microarrays require genome-specific reagents. We have developed Diff-seq, a sequencing-based mismatch detection assay for SNP discovery without the requirement for specialized nucleic-acid reagents. Diff-seq leverages the Surveyor endonuclease to cleave mismatched DNA molecules that are generated after cross-annealing of a complex pool of DNA fragments. Sequencing libraries enriched for Surveyor-cleaved molecules result in increased coverage at the variant sites. Diff-seq detected all mismatches present in an initial test substrate, with specific enrichment dependent on the identity and context of the variation. Application to viral sequences resulted in increased observation of variant alleles in a biologically relevant context. Diff-Seq has the potential to increase the sensitivity and efficiency of high-throughput sequencing in the detection of variation.

    View details for PubMedID 29361139

    View details for PubMedCentralID PMC5909455

  • Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts ELIFE Bell, J. C., Jukam, D., Teran, N. A., Risca, V. I., Smith, O. K., Johnson, W. L., Skotheim, J. M., Greenleaf, W., Straight, A. F. 2018; 7

    Abstract

    RNA is a critical component of chromatin in eukaryotes, both as a product of transcription, and as an essential constituent of ribonucleoprotein complexes that regulate both local and global chromatin states. Here, we present a proximity ligation and sequencing method called Chromatin-Associated RNA sequencing (ChAR-seq) that maps all RNA-to-DNA contacts across the genome. Using Drosophila cells, we show that ChAR-seq provides unbiased, de novo identification of targets of chromatin-bound RNAs including nascent transcripts, chromosome-specific dosage compensation ncRNAs, and genome-wide trans-associated RNAs involved in co-transcriptional RNA processing.

    View details for PubMedID 29648534

  • Rapid chromatin repression by Aire provides precise control of immune tolerance NATURE IMMUNOLOGY Koh, A. S., Miller, E. L., Buenrostro, J. D., Moskowitz, D. M., Wang, J., Greenleaf, W. J., Chang, H. Y., Crabtree, G. R. 2018; 19 (2): 162-+

    Abstract

    Aire mediates the expression of tissue-specific antigens in thymic epithelial cells to promote tolerance against self-reactive T lymphocytes. However, the mechanism that allows expression of tissue-specific genes at levels that prevent harm is unknown. Here we show that Brg1 generates accessibility at tissue-specific loci to impose central tolerance. We found that Aire has an intrinsic repressive function that restricts chromatin accessibility and opposes Brg1 across the genome. Aire exerted this repressive influence within minutes after recruitment to chromatin and restrained the amplitude of active transcription. Disease-causing mutations that impair Aire-induced activation also impair the protein's repressive function, which indicates dual roles for Aire. Together, Brg1 and Aire fine-tune the expression of tissue-specific genes at levels that prevent toxicity yet promote immune tolerance.

    View details for PubMedID 29335648

  • INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division CELL REPORTS Gowans, G. J., Schep, A. N., Wong, K., King, D. A., Greenleaf, W. J., Morrison, A. J. 2018; 22 (3): 611–23

    Abstract

    Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC). Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.

    View details for PubMedID 29346761

  • Transcript-indexed ATAC-seq for precision immune profiling. Nature medicine Satpathy, A. T., Saligrama, N. n., Buenrostro, J. D., Wei, Y. n., Wu, B. n., Rubin, A. J., Granja, J. M., Lareau, C. A., Li, R. n., Qi, Y. n., Parker, K. R., Mumbach, M. R., Serratelli, W. S., Gennert, D. G., Schep, A. N., Corces, M. R., Khodadoust, M. S., Kim, Y. H., Khavari, P. A., Greenleaf, W. J., Davis, M. M., Chang, H. Y. 2018

    Abstract

    T cells create vast amounts of diversity in the genes that encode their T cell receptors (TCRs), which enables individual clones to recognize specific peptide-major histocompatibility complex (MHC) ligands. Here we combined sequencing of the TCR-encoding genes with assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. By using this approach, termed transcript-indexed ATAC-seq (T-ATAC-seq), we identified epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers and primary leukemic T cells from patient samples. In peripheral blood CD4+ T cells from healthy individuals, we identified cis and trans regulators of naive and memory T cell states and found substantial heterogeneity in surface-marker-defined T cell populations. In patients with a leukemic form of cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by allowing separation of the signals that arose from the malignant clone from the background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity and immunotherapy.

    View details for PubMedID 29686426

  • The chromatin accessibility landscape of primary human cancers. Science (New York, N.Y.) Corces, M. R., Granja, J. M., Shams, S. n., Louie, B. H., Seoane, J. A., Zhou, W. n., Silva, T. C., Groeneveld, C. n., Wong, C. K., Cho, S. W., Satpathy, A. T., Mumbach, M. R., Hoadley, K. A., Robertson, A. G., Sheffield, N. C., Felau, I. n., Castro, M. A., Berman, B. P., Staudt, L. M., Zenklusen, J. C., Laird, P. W., Curtis, C. n., Greenleaf, W. J., Chang, H. Y. 2018; 362 (6413)

    Abstract

    We present the genome-wide chromatin accessibility profiles of 410 tumor samples spanning 23 cancer types from The Cancer Genome Atlas (TCGA). We identify 562,709 transposase-accessible DNA elements that substantially extend the compendium of known cis-regulatory elements. Integration of ATAC-seq (the assay for transposase-accessible chromatin using sequencing) with TCGA multi-omic data identifies a large number of putative distal enhancers that distinguish molecular subtypes of cancers, uncovers specific driving transcription factors via protein-DNA footprints, and nominates long-range gene-regulatory interactions in cancer. These data reveal genetic risk loci of cancer predisposition as active DNA regulatory elements in cancer, identify gene-regulatory interactions underlying cancer immune evasion, and pinpoint noncoding mutations that drive enhancer activation and may affect patient survival. These results suggest a systematic approach to understanding the noncoding genome in cancer to advance diagnosis and therapy.

    View details for DOI 10.1126/science.aav1898

    View details for PubMedID 30361341

  • Origin and differentiation of human memory CD8 T cells after vaccination NATURE Akondy, R. S., Fitch, M., Edupuganti, S., Yang, S., Kissick, H. T., Li, K. W., Youngblood, B. A., Abdelsamed, H. A., McGuire, D. J., Cohen, K. W., Alexe, G., Nagar, S., McCausland, M. M., Gupta, S., Tata, P., Haining, W., McElrath, M., Zhang, D., Hu, B., Greenleaf, W. J., Goronzy, J. J., Mulligan, M. J., Hellerstein, M., Ahmed, R. 2017; 552 (7685): 362-+

    Abstract

    The differentiation of human memory CD8 T cells is not well understood. Here we address this issue using the live yellow fever virus (YFV) vaccine, which induces long-term immunity in humans. We used in vivo deuterium labelling to mark CD8 T cells that proliferated in response to the virus and then assessed cellular turnover and longevity by quantifying deuterium dilution kinetics in YFV-specific CD8 T cells using mass spectrometry. This longitudinal analysis showed that the memory pool originates from CD8 T cells that divided extensively during the first two weeks after infection and is maintained by quiescent cells that divide less than once every year (doubling time of over 450 days). Although these long-lived YFV-specific memory CD8 T cells did not express effector molecules, their epigenetic landscape resembled that of effector CD8 T cells. This open chromatin profile at effector genes was maintained in memory CD8 T cells isolated even a decade after vaccination, indicating that these cells retain an epigenetic fingerprint of their effector history and remain poised to respond rapidly upon re-exposure to the pathogen.

    View details for PubMedID 29236685

  • Challenges and recommendations for epigenomics in precision health NATURE BIOTECHNOLOGY Carter, A. C., Chang, H. Y., Church, G., Dombkowski, A., Ecker, J. R., Gil, E., Giresi, P. G., Greely, H., Greenleaf, W. J., Hacohen, N., He, C., Hill, D., Ko, J., Kohane, I., Kundaje, A., Palmer, M., Snyder, M. P., Tung, J., Urban, A., Vidal, M., Wong, W. 2017; 35 (12): 1128–32

    View details for PubMedID 29220033

  • Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans GENOME RESEARCH Daugherty, A. C., Yeo, R. W., Buenrostro, J. D., Greenleaf, W. J., Kundaje, A., Brunet, A. 2017; 27 (12): 2096–2107

    Abstract

    Chromatin accessibility, a crucial component of genome regulation, has primarily been studied in homogeneous and simple systems, such as isolated cell populations or early-development models. Whether chromatin accessibility can be assessed in complex, dynamic systems in vivo with high sensitivity remains largely unexplored. In this study, we use ATAC-seq to identify chromatin accessibility changes in a whole animal, the model organism Caenorhabditis elegans, from embryogenesis to adulthood. Chromatin accessibility changes between developmental stages are highly reproducible, recapitulate histone modification changes, and reveal key regulatory aspects of the epigenomic landscape throughout organismal development. We find that over 5000 distal noncoding regions exhibit dynamic changes in chromatin accessibility between developmental stages and could thereby represent putative enhancers. When tested in vivo, several of these putative enhancers indeed drive novel cell-type- and temporal-specific patterns of expression. Finally, by integrating transcription factor binding motifs in a machine learning framework, we identify EOR-1 as a unique transcription factor that may regulate chromatin dynamics during development. Our study provides a unique resource for C. elegans, a system in which the prevalence and importance of enhancers remains poorly characterized, and demonstrates the power of using whole organism chromatin accessibility to identify novel regulatory regions in complex systems.

    View details for PubMedID 29141961

  • chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nature methods Schep, A. N., Wu, B., Buenrostro, J. D., Greenleaf, W. J. 2017; 14 (10): 975-978

    Abstract

    Single-cell ATAC-seq (scATAC) yields sparse data that make conventional analysis challenging. We developed chromVAR (http://www.github.com/GreenleafLab/chromVAR), an R package for analyzing sparse chromatin-accessibility data by estimating gain or loss of accessibility within peaks sharing the same motif or annotation while controlling for technical biases. chromVAR enables accurate clustering of scATAC-seq profiles and characterization of known and de novo sequence motifs associated with variation in chromatin accessibility.

    View details for DOI 10.1038/nmeth.4401

    View details for PubMedID 28825706

    View details for PubMedCentralID PMC5623146

  • Open Chromatin Profiling in hiPSC-Derived Neurons Prioritizes Functional Noncoding Psychiatric Risk Variants and Highlights Neurodevelopmental Loci. Cell stem cell Forrest, M. P., Zhang, H., Moy, W., McGowan, H., Leites, C., Dionisio, L. E., Xu, Z., Shi, J., Sanders, A. R., Greenleaf, W. J., Cowan, C. A., Pang, Z. P., Gejman, P. V., Penzes, P., Duan, J. 2017; 21 (3): 305-318.e8

    Abstract

    Most disease variants lie within noncoding genomic regions, making their functional interpretation challenging. Because chromatin openness strongly influences transcriptional activity, we hypothesized that cell-type-specific open chromatin regions (OCRs) might highlight disease-relevant noncoding sequences. To investigate, we mapped global OCRs in neurons differentiating from hiPSCs, a cellular model for studying neurodevelopmental disorders such as schizophrenia (SZ). We found that the OCRs are highly dynamic and can stratify GWAS-implicated SZ risk variants. Of the more than 3,500 SZ-associated variants analyzed, we prioritized ∼100 putatively functional ones located in neuronal OCRs, including rs1198588, at a leading risk locus flanking MIR137. Excitatory neurons derived from hiPSCs with CRISPR/Cas9-edited rs1198588 or a rare proximally located SZ risk variant showed altered MIR137 expression, dendrite arborization, and synapse maturation. Our study shows that noncoding disease variants in OCRs can affect neurodevelopment, and that analysis of open chromatin regions can help prioritize functionally relevant noncoding variants identified by GWAS.

    View details for DOI 10.1016/j.stem.2017.07.008

    View details for PubMedID 28803920

    View details for PubMedCentralID PMC5591074

  • Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens NATURE COMMUNICATIONS Morgens, D. W., Wainberg, M., Boyle, E. A., Ursu, O., Araya, C. L., Tsui, C. K., Haney, M. S., Hess, G. T., Han, K., Jeng, E. E., Li, A., Snyder, M. P., Greenleaf, W. J., Kundaje, A., Bassik, M. C. 2017; 8

    Abstract

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens.

    View details for DOI 10.1038/ncomms15178

    View details for PubMedID 28474669

  • Comprehensive and quantitative mapping of RNA-protein interactions across a transcribed eukaryotic genome PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA She, R., Chakravarty, A. K., Layton, C. J., Chircus, L. M., Andreasson, J. O., Damaraju, N., McMahon, P. L., Buenrostro, J. D., Jarosz, D. F., Greenleaf, W. J. 2017; 114 (14): 3619-3624

    Abstract

    RNA-binding proteins (RBPs) control the fate of nearly every transcript in a cell. However, no existing approach for studying these posttranscriptional gene regulators combines transcriptome-wide throughput and biophysical precision. Here, we describe an assay that accomplishes this. Using commonly available hardware, we built a customizable, open-source platform that leverages the inherent throughput of Illumina technology for direct biophysical measurements. We used the platform to quantitatively measure the binding affinity of the prototypical RBP Vts1 for every transcript in the Saccharomyces cerevisiae genome. The scale and precision of these measurements revealed many previously unknown features of this well-studied RBP. Our transcribed genome array (TGA) assayed both rare and abundant transcripts with equivalent proficiency, revealing hundreds of low-abundance targets missed by previous approaches. These targets regulated diverse biological processes including nutrient sensing and the DNA damage response, and implicated Vts1 in de novo gene "birth." TGA provided single-nucleotide resolution for each binding site and delineated a highly specific sequence and structure motif for Vts1 binding. Changes in transcript levels in vts1Δ cells established the regulatory function of these binding sites. The impact of Vts1 on transcript abundance was largely independent of where it bound within an mRNA, challenging prevailing assumptions about how this RBP drives RNA degradation. TGA thus enables a quantitative description of the relationship between variant RNA structures, affinity, and in vivo phenotype on a transcriptome-wide scale. We anticipate that TGA will provide similarly comprehensive and quantitative insights into the function of virtually any RBP.

    View details for DOI 10.1073/pnas.1618370114

    View details for Web of Science ID 000398159000041

    View details for PubMedID 28325876

  • Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells. Nature genetics Xu, J., Carter, A. C., Gendrel, A., Attia, M., Loftus, J., Greenleaf, W. J., Tibshirani, R., Heard, E., Chang, H. Y. 2017; 49 (3): 377-386

    Abstract

    We developed an allele-specific assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to genotype and profile active regulatory DNA across the genome. Using a mouse hybrid F1 system, we found that monoallelic DNA accessibility across autosomes was pervasive, developmentally programmed and composed of several patterns. Genetically determined accessibility was enriched at distal enhancers, but random monoallelically accessible (RAMA) elements were enriched at promoters and may act as gatekeepers of monoallelic mRNA expression. Allelic choice at RAMA elements was stable across cell generations and bookmarked through mitosis. RAMA elements in neural progenitor cells were biallelically accessible in embryonic stem cells but premarked with bivalent histone modifications; one allele was silenced during differentiation. Quantitative analysis indicated that allelic choice at the majority of RAMA elements is consistent with a stochastic process; however, up to 30% of RAMA elements may deviate from the expected pattern, suggesting a regulated or counting mechanism.

    View details for DOI 10.1038/ng.3769

    View details for PubMedID 28112738

  • TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nature structural & molecular biology Miller, E. L., Hargreaves, D. C., Kadoch, C., Chang, C., Calarco, J. P., Hodges, C., Buenrostro, J. D., Cui, K., Greenleaf, W. J., Zhao, K., Crabtree, G. R. 2017

    Abstract

    The resolution and formation of facultative heterochromatin are essential for development, reprogramming, and oncogenesis. The mechanisms underlying these changes are poorly understood owing to the difficulty of studying heterochromatin dynamics and structure in vivo. We devised an in vivo approach to investigate these mechanisms and found that topoisomerase II (TOP2), but not TOP1, synergizes with BAF (mSWI/SNF) ATP-dependent chromatin remodeling complexes genome-wide to resolve facultative heterochromatin to accessible chromatin independent of transcription. This indicates that changes in DNA topology that take place through (de-)catenation rather than the release of torsional stress through swiveling are necessary for heterochromatin resolution. TOP2 and BAF cooperate to recruit pluripotency factors, which explains some of the instructive roles of BAF complexes. Unexpectedly, we found that TOP2 also plays a role in the re-formation of facultative heterochromatin; this finding suggests that facultative heterochromatin and accessible chromatin exist at different states of catenation or other topologies, which might be critical to their structures.

    View details for DOI 10.1038/nsmb.3384

    View details for PubMedID 28250416

  • Epigenomics of human CD8 T cell differentiation and aging. Science immunology Moskowitz, D. M., Zhang, D. W., Hu, B., Le Saux, S., Yanes, R. E., Ye, Z., Buenrostro, J. D., Weyand, C. M., Greenleaf, W. J., Goronzy, J. J. 2017; 2 (8)

    Abstract

    The efficacy of the adaptive immune response declines dramatically with age, but the cell-intrinsic mechanisms driving immune aging in humans remain poorly understood. Immune aging is characterized by a loss of self-renewing naïve cells and the accumulation of differentiated but dysfunctional cells within the CD8 T cell compartment. Using ATAC-seq, we inferred the transcription factor binding activities correlated with naive and central and effector memory CD8 T cell states in young adults. Integrating our results with RNA-seq, we identified transcription networks associated with CD8 T cell differentiation, with prominent roles implicated for BATF, ETS1, Eomes, and Sp1. Extending our analysis to aged humans, we found that the differences between the memory and naive subsets were largely preserved across age, but that naive and central memory cells from older individuals exhibited a shift toward more differentiated patterns of chromatin openness. Additionally, aged naive cells displayed a loss in chromatin accessibility at gene promoters, largely associated with a decrease in NRF1 binding. This shift was implicated in a marked drop-off in the ability of the aged naive cells to transcribe respiratory chain genes, which may explain the reduced capacity of oxidative phosphorylation in older naïve cells. Our findings identify BATF- and NRF1-driven gene regulation as potential targets for delaying CD8 T cell aging and restoring function.

    View details for DOI 10.1126/sciimmunol.aag0192

    View details for PubMedID 28439570

  • Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome biology Litzenburger, U. M., Buenrostro, J. D., Wu, B., Shen, Y., Sheffield, N. C., Kathiria, A., Greenleaf, W. J., Chang, H. Y. 2017; 18 (1): 15-?

    Abstract

    Cell-to-cell heterogeneity is a major driver of cancer evolution, progression, and emergence of drug resistance. Epigenomic variation at the single-cell level can rapidly create cancer heterogeneity but is difficult to detect and assess functionally.We develop a strategy to bridge the gap between measurement and function in single-cell epigenomics. Using single-cell chromatin accessibility and RNA-seq data in K562 leukemic cells, we identify the cell surface marker CD24 as co-varying with chromatin accessibility changes linked to GATA transcription factors in single cells. Fluorescence-activated cell sorting of CD24 high versus low cells prospectively isolated GATA1 and GATA2 high versus low cells. GATA high versus low cells express differential gene regulatory networks, differential sensitivity to the drug imatinib mesylate, and differential self-renewal capacity. Lineage tracing experiments show that GATA/CD24hi cells have the capability to rapidly reconstitute the heterogeneity within the entire starting population, suggesting that GATA expression levels drive a phenotypically relevant source of epigenomic plasticity.Single-cell chromatin accessibility can guide prospective characterization of cancer heterogeneity. Epigenomic subpopulations in cancer impact drug sensitivity and the clonal dynamics of cancer evolution.

    View details for DOI 10.1186/s13059-016-1133-7

    View details for PubMedID 28118844

  • Multiparameter Particle Display (MPPD): A Quantitative Screening Method for the Discovery of Highly Specific Aptamers. Angewandte Chemie (International ed. in English) Wang, J., Yu, J., Yang, Q., McDermott, J., Scott, A., Vukovich, M., Lagrois, R., Gong, Q., Greenleaf, W., Eisenstein, M., Ferguson, B. S., Soh, H. T. 2017; 56 (3): 744-747

    Abstract

    Aptamers are a promising class of affinity reagents because they are chemically synthesized, thus making them highly reproducible and distributable as sequence information rather than a physical entity. Although many high-quality aptamers have been previously reported, it is difficult to routinely generate aptamers that possess both high affinity and specificity. One of the reasons is that conventional aptamer selection can only be performed either for affinity (positive selection) or for specificity (negative selection), but not both simultaneously. In this work, we harness the capacity of fluorescence activated cell sorting (FACS) for multicolor sorting to simultaneously screen for affinity and specificity at a throughput of 10(7) aptamers per hour. As a proof of principle, we generated DNA aptamers that exhibit picomolar to low nanomolar affinity in human serum for three diverse proteins, and show that these aptamers are capable of outperforming high-quality monoclonal antibodies in a standard ELISA detection assay.

    View details for DOI 10.1002/anie.201608880

    View details for PubMedID 27933702

    View details for PubMedCentralID PMC5225111

  • Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature Risca, V. I., Denny, S. K., Straight, A. F., Greenleaf, W. J. 2017; 541 (7636): 237-241

    Abstract

    Chromatin structure at the length scale encompassing local nucleosome-nucleosome interactions is thought to play a crucial role in regulating transcription and access to DNA. However, this secondary structure of chromatin remains poorly understood compared with the primary structure of single nucleosomes or the tertiary structure of long-range looping interactions. Here we report the first genome-wide map of chromatin conformation in human cells at the 1-3 nucleosome (50-500 bp) scale, obtained using ionizing radiation-induced spatially correlated cleavage of DNA with sequencing (RICC-seq) to identify DNA-DNA contacts that are spatially proximal. Unbiased analysis of RICC-seq signal reveals regional enrichment of DNA fragments characteristic of alternating rather than adjacent nucleosome interactions in tri-nucleosome units, particularly in H3K9me3-marked heterochromatin. We infer differences in the likelihood of nucleosome-nucleosome contacts among open chromatin, H3K27me3-marked, and H3K9me3-marked repressed chromatin regions. After calibrating RICC-seq signal to three-dimensional distances, we show that compact two-start helical fibre structures with stacked alternating nucleosomes are consistent with RICC-seq fragmentation patterns from H3K9me3-marked chromatin, while non-compact structures and solenoid structures are consistent with open chromatin. Our data support a model of chromatin architecture in intact interphase nuclei consistent with variable longitudinal compaction of two-start helical fibres.

    View details for DOI 10.1038/nature20781

    View details for PubMedID 28024297

  • Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nature genetics Mumbach, M. R., Satpathy, A. T., Boyle, E. A., Dai, C. n., Gowen, B. G., Cho, S. W., Nguyen, M. L., Rubin, A. J., Granja, J. M., Kazane, K. R., Wei, Y. n., Nguyen, T. n., Greenside, P. G., Corces, M. R., Tycko, J. n., Simeonov, D. R., Suliman, N. n., Li, R. n., Xu, J. n., Flynn, R. A., Kundaje, A. n., Khavari, P. A., Marson, A. n., Corn, J. E., Quertermous, T. n., Greenleaf, W. J., Chang, H. Y. 2017

    Abstract

    The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer-promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases.

    View details for PubMedID 28945252

  • Chromatin Accessibility Landscape of Cutaneous T Cell Lymphoma and Dynamic Response to HDAC Inhibitors. Cancer cell Qu, K. n., Zaba, L. C., Satpathy, A. T., Giresi, P. G., Li, R. n., Jin, Y. n., Armstrong, R. n., Jin, C. n., Schmitt, N. n., Rahbar, Z. n., Ueno, H. n., Greenleaf, W. J., Kim, Y. H., Chang, H. Y. 2017

    Abstract

    Here, we define the landscape and dynamics of active regulatory DNA in cutaneous T cell lymphoma (CTCL) by ATAC-seq. Analysis of 111 human CTCL and control samples revealed extensive chromatin signatures that distinguished leukemic, host, and normal CD4(+) T cells. We identify three dominant patterns of transcription factor (TF) activation that drive leukemia regulomes, as well as TF deactivations that alter host T cells in CTCL patients. Clinical response to histone deacetylase inhibitors (HDACi) is strongly associated with a concurrent gain in chromatin accessibility. HDACi causes distinct chromatin responses in leukemic and host CD4(+) T cells, reprogramming host T cells toward normalcy. These results provide a foundational framework to study personal regulomes in human cancer and epigenetic therapy.

    View details for PubMedID 28625481

  • An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nature methods Corces, M. R., Trevino, A. E., Hamilton, E. G., Greenside, P. G., Sinnott-Armstrong, N. A., Vesuna, S. n., Satpathy, A. T., Rubin, A. J., Montine, K. S., Wu, B. n., Kathiria, A. n., Cho, S. W., Mumbach, M. R., Carter, A. C., Kasowski, M. n., Orloff, L. A., Risca, V. I., Kundaje, A. n., Khavari, P. A., Montine, T. J., Greenleaf, W. J., Chang, H. Y. 2017

    Abstract

    We present Omni-ATAC, an improved ATAC-seq protocol for chromatin accessibility profiling that works across multiple applications with substantial improvement of signal-to-background ratio and information content. The Omni-ATAC protocol generates chromatin accessibility profiles from archival frozen tissue samples and 50-μm sections, revealing the activities of disease-associated DNA elements in distinct human brain structures. The Omni-ATAC protocol enables the interrogation of personal regulomes in tissue context and translational studies.

    View details for PubMedID 28846090

  • Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature Simeonov, D. R., Gowen, B. G., Boontanrart, M. n., Roth, T. L., Gagnon, J. D., Mumbach, M. R., Satpathy, A. T., Lee, Y. n., Bray, N. L., Chan, A. Y., Lituiev, D. S., Nguyen, M. L., Gate, R. E., Subramaniam, M. n., Li, Z. n., Woo, J. M., Mitros, T. n., Ray, G. J., Curie, G. L., Naddaf, N. n., Chu, J. S., Ma, H. n., Boyer, E. n., Van Gool, F. n., Huang, H. n., Liu, R. n., Tobin, V. R., Schumann, K. n., Daly, M. J., Farh, K. K., Ansel, K. M., Ye, C. J., Greenleaf, W. J., Anderson, M. S., Bluestone, J. A., Chang, H. Y., Corn, J. E., Marson, A. n. 2017

    Abstract

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

    View details for PubMedID 28854172

  • Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nature genetics Rubin, A. J., Barajas, B. C., Furlan-Magaril, M. n., Lopez-Pajares, V. n., Mumbach, M. R., Howard, I. n., Kim, D. S., Boxer, L. D., Cairns, J. n., Spivakov, M. n., Wingett, S. W., Shi, M. n., Zhao, Z. n., Greenleaf, W. J., Kundaje, A. n., Snyder, M. n., Chang, H. Y., Fraser, P. n., Khavari, P. A. 2017; 49 (10): 1522–28

    Abstract

    Chromosome conformation is an important feature of metazoan gene regulation; however, enhancer-promoter contact remodeling during cellular differentiation remains poorly understood. To address this, genome-wide promoter capture Hi-C (CHi-C) was performed during epidermal differentiation. Two classes of enhancer-promoter contacts associated with differentiation-induced genes were identified. The first class ('gained') increased in contact strength during differentiation in concert with enhancer acquisition of the H3K27ac activation mark. The second class ('stable') were pre-established in undifferentiated cells, with enhancers constitutively marked by H3K27ac. The stable class was associated with the canonical conformation regulator cohesin, whereas the gained class was not, implying distinct mechanisms of contact formation and regulation. Analysis of stable enhancers identified a new, essential role for a constitutively expressed, lineage-restricted ETS-family transcription factor, EHF, in epidermal differentiation. Furthermore, neither class of contacts was observed in pluripotent cells, suggesting that lineage-specific chromatin structure is established in tissue progenitor cells and is further remodeled in terminal differentiation.

    View details for PubMedID 28805829

  • HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nature methods Mumbach, M. R., Rubin, A. J., Flynn, R. A., Dai, C., Khavari, P. A., Greenleaf, W. J., Chang, H. Y. 2016; 13 (11): 919-922

    Abstract

    Genome conformation is central to gene control but challenging to interrogate. Here we present HiChIP, a protein-centric chromatin conformation method. HiChIP improves the yield of conformation-informative reads by over 10-fold and lowers the input requirement over 100-fold relative to that of ChIA-PET. HiChIP of cohesin reveals multiscale genome architecture with greater signal-to-background ratios than those of in situ Hi-C.

    View details for DOI 10.1038/nmeth.3999

    View details for PubMedID 27643841

  • ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nature methods Chen, X., Shen, Y., Draper, W., Buenrostro, J. D., Litzenburger, U., Cho, S. W., Satpathy, A. T., Carter, A. C., Ghosh, R. P., East-Seletsky, A., Doudna, J. A., Greenleaf, W. J., Liphardt, J. T., Chang, H. Y. 2016

    Abstract

    Spatial organization of the genome plays a central role in gene expression, DNA replication, and repair. But current epigenomic approaches largely map DNA regulatory elements outside of the native context of the nucleus. Here we report assay of transposase-accessible chromatin with visualization (ATAC-see), a transposase-mediated imaging technology that employs direct imaging of the accessible genome in situ, cell sorting, and deep sequencing to reveal the identity of the imaged elements. ATAC-see revealed the cell-type-specific spatial organization of the accessible genome and the coordinated process of neutrophil chromatin extrusion, termed NETosis. Integration of ATAC-see with flow cytometry enables automated quantitation and prospective cell isolation as a function of chromatin accessibility, and it reveals a cell-cycle dependence of chromatin accessibility that is especially dynamic in G1 phase. The integration of imaging and epigenomics provides a general and scalable approach for deciphering the spatiotemporal architecture of gene control.

    View details for DOI 10.1038/nmeth.4031

    View details for PubMedID 27749837

  • Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature genetics Corces, M. R., Buenrostro, J. D., Wu, B., Greenside, P. G., Chan, S. M., Koenig, J. L., Snyder, M. P., Pritchard, J. K., Kundaje, A., Greenleaf, W. J., Majeti, R., Chang, H. Y. 2016; 48 (10): 1193-1203

    Abstract

    We define the chromatin accessibility and transcriptional landscapes in 13 human primary blood cell types that span the hematopoietic hierarchy. Exploiting the finding that the enhancer landscape better reflects cell identity than mRNA levels, we enable 'enhancer cytometry' for enumeration of pure cell types from complex populations. We identify regulators governing hematopoietic differentiation and further show the lineage ontogeny of genetic elements linked to diverse human diseases. In acute myeloid leukemia (AML), chromatin accessibility uncovers unique regulatory evolution in cancer cells with a progressively increasing mutation burden. Single AML cells exhibit distinctive mixed regulome profiles corresponding to disparate developmental stages. A method to account for this regulatory heterogeneity identified cancer-specific deviations and implicated HOX factors as key regulators of preleukemic hematopoietic stem cell characteristics. Thus, regulome dynamics can provide diverse insights into hematopoietic development and disease.

    View details for DOI 10.1038/ng.3646

    View details for PubMedID 27526324

  • Nfib Promotes Metastasis through a Widespread Increase in Chromatin Accessibility CELL Denny, S. K., Yang, D., Chuang, C., Brady, J. J., Lim, J. S., Gruner, B. M., Chiou, S., Schep, A. N., Baral, J., Hamard, C., Antoine, M., Wislez, M., Kong, C. S., Connolly, A. J., Park, K., Sage, J., Greenleaf, W. J., Winslow, M. M. 2016; 166 (2): 328-342

    Abstract

    Metastases are the main cause of cancer deaths, but the mechanisms underlying metastatic progression remain poorly understood. We isolated pure populations of cancer cells from primary tumors and metastases from a genetically engineered mouse model of human small cell lung cancer (SCLC) to investigate the mechanisms that drive the metastatic spread of this lethal cancer. Genome-wide characterization of chromatin accessibility revealed the opening of large numbers of distal regulatory elements across the genome during metastatic progression. These changes correlate with copy number amplification of the Nfib locus, and differentially accessible sites were highly enriched for Nfib transcription factor binding sites. Nfib is necessary and sufficient to increase chromatin accessibility at a large subset of the intergenic regions. Nfib promotes pro-metastatic neuronal gene expression programs and drives the metastatic ability of SCLC cells. The identification of widespread chromatin changes during SCLC progression reveals an unexpected global reprogramming during metastatic progression.

    View details for DOI 10.1016/j.cell.2016.05.052

    View details for PubMedID 27374332

  • Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations. Nature genetics Araya, C. L., Cenik, C., Reuter, J. A., Kiss, G., Pande, V. S., Snyder, M. P., Greenleaf, W. J. 2016; 48 (2): 117-125

    Abstract

    Cancer sequencing studies have primarily identified cancer driver genes by the accumulation of protein-altering mutations. An improved method would be annotation independent, sensitive to unknown distributions of functions within proteins and inclusive of noncoding drivers. We employed density-based clustering methods in 21 tumor types to detect variably sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and noncoding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs demonstrate spatial clustering of alterations in molecular domains and at interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated across tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest that mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally agnostic driver identification.

    View details for DOI 10.1038/ng.3471

    View details for PubMedID 26691984

  • Beyond the Linear Genome: Paired-End Sequencing as a Biophysical Tool. Trends in cell biology Risca, V. I., Greenleaf, W. J. 2015; 25 (12): 716-719

    Abstract

    Paired-end sequencing has enabled a variety of new methods for high-throughput interrogation of both genome structure and chromatin architecture. Here, we discuss how the paired-end paradigm can be used to interpret sequencing data as biophysical measurements of in vivo chromatin structure that report on single molecules in single cells.

    View details for DOI 10.1016/j.tcb.2015.08.004

    View details for PubMedID 26437592

    View details for PubMedCentralID PMC5540433

  • Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions GENOME RESEARCH Schep, A. N., Buenrostro, J. D., Denny, S. K., Schwartz, K., Sherlock, G., Greenleaf, W. J. 2015; 25 (11): 1757-1770

    View details for DOI 10.1101/gr.192294.115

    View details for PubMedID 26314830

  • Individuality and Variation of Personal Regulomes in Primary Human T Cells CELL SYSTEMS Qu, K., Zaba, L. C., Giresi, P. G., Li, R., Longmire, M., Kim, Y. H., Greenleaf, W. J., Chang, H. Y. 2015; 1 (1): 51-61

    Abstract

    Here we survey variation and dynamics of active regulatory elements genome-wide using longitudinal samples from human individuals. We applied Assay of Transposase Accessible Chromatin with sequencing (ATAC-seq) to map chromatin accessibility in primary CD4+ T cells isolated from standard blood draws of 12 healthy volunteers over time, from cancer patients, and during T cell activation. Over 4,000 predicted regulatory elements (7.2%) showed reproducible variation in accessibility between individuals. Gender was the most significant attributable source of variation. ATAC-seq revealed previously undescribed elements that escape X chromosome inactivation and predicted gender-specific gene regulatory networks across autosomes, which coordinately affect genes with immune function. Noisy regulatory elements with personal variation in accessibility are significantly enriched for autoimmune disease loci. Over one third of regulome variation lacked genetic variation in cis, suggesting contributions from environmental or epigenetic factors. These results refine concepts of human individuality and provide a foundational reference for comparing disease-associated regulomes.

    View details for DOI 10.1016/j.cels.2015.06.003

    View details for Web of Science ID 000209925400012

    View details for PubMedCentralID PMC4522940

  • Individuality and variation of personal regulomes in primary human T cells. Cell systems Qu, K., Zaba, L. C., Giresi, P. G., Li, R., Longmire, M., Kim, Y. H., Greenleaf, W. J., Chang, H. Y. 2015; 1 (1): 51-61

    Abstract

    Here we survey variation and dynamics of active regulatory elements genome-wide using longitudinal samples from human individuals. We applied Assay of Transposase Accessible Chromatin with sequencing (ATAC-seq) to map chromatin accessibility in primary CD4+ T cells isolated from standard blood draws of 12 healthy volunteers over time, from cancer patients, and during T cell activation. Over 4,000 predicted regulatory elements (7.2%) showed reproducible variation in accessibility between individuals. Gender was the most significant attributable source of variation. ATAC-seq revealed previously undescribed elements that escape X chromosome inactivation and predicted gender-specific gene regulatory networks across autosomes, which coordinately affect genes with immune function. Noisy regulatory elements with personal variation in accessibility are significantly enriched for autoimmune disease loci. Over one third of regulome variation lacked genetic variation in cis, suggesting contributions from environmental or epigenetic factors. These results refine concepts of human individuality and provide a foundational reference for comparing disease-associated regulomes.

    View details for PubMedID 26251845

  • Single-cell chromatin accessibility reveals principles of regulatory variation NATURE Buenostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., Chang, H. Y., Greenleaf, W. J. 2015; 523 (7561): 486-U264

    Abstract

    Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'.

    View details for DOI 10.1038/nature14590

    View details for Web of Science ID 000358378900042

  • Unraveling the 3D genome: genomics tools for multiscale exploration. Trends in genetics Risca, V. I., Greenleaf, W. J. 2015; 31 (7): 357-372

    Abstract

    A decade of rapid method development has begun to yield exciting insights into the 3D architecture of the metazoan genome and the roles it may play in regulating transcription. Here we review core methods and new tools in the modern genomicist's toolbox at three length scales, ranging from single base pairs to megabase-scale chromosomal domains, and discuss the emerging picture of the 3D genome that these tools have revealed. Blind spots remain, especially at intermediate length scales spanning a few nucleosomes, but thanks in part to new technologies that permit targeted alteration of chromatin states and time-resolved studies, the next decade holds great promise for hypothesis-driven research into the mechanisms that drive genome architecture and transcriptional regulation.

    View details for DOI 10.1016/j.tig.2015.03.010

    View details for PubMedID 25887733

    View details for PubMedCentralID PMC4490074

  • Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nature biotechnology Maza, I., Caspi, I., Zviran, A., Chomsky, E., Rais, Y., Viukov, S., Geula, S., Buenrostro, J. D., Weinberger, L., Krupalnik, V., Hanna, S., Zerbib, M., Dutton, J. R., Greenleaf, W. J., Massarwa, R., Novershtern, N., Hanna, J. H. 2015; 33 (7): 769-74

    Abstract

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

    View details for DOI 10.1038/nbt.3270

    View details for PubMedID 26098448

    View details for PubMedCentralID PMC4500825

  • Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors NATURE BIOTECHNOLOGY Maza, I., Caspi, I., Zviran, A., Chomsky, E., Rais, Y., Viukov, S., Geula, S., Buenrostro, J. D., Weinberger, L., Krupalnik, V., Hanna, S., Zerbib, M., Dutton, J. R., Greenleaf, W. J., Massarwa, R., Novershtern, N., Hanna, J. H. 2015; 33 (7): 769-774

    Abstract

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

    View details for DOI 10.1038/nbt.3270

    View details for Web of Science ID 000358396100034

    View details for PubMedCentralID PMC4500825

  • Assaying the epigenome in limited numbers of cells. Methods Greenleaf, W. J. 2015; 72: 51-56

    Abstract

    Spectacular advances in the throughput of DNA sequencing have allowed genome-wide analysis of epigenetic features such as methylation, nucleosome position and post-translational modification, chromatin accessibility and connectivity, and transcription factor binding. However, for rare or precious biological samples, input requirements of many of these methods limit their application. In this review we discuss recent advances for low-input genome-wide analysis of chromatin immunoprecipitation, methylation, DNA accessibility, and chromatin conformation.

    View details for DOI 10.1016/j.ymeth.2014.10.010

    View details for PubMedID 25461774

  • ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Current protocols in molecular biology / edited by Frederick M. Ausubel ... [et al.] Buenrostro, J. D., Wu, B., Chang, H. Y., Greenleaf, W. J. 2015; 109: 21 29 1-9

    Abstract

    This unit describes Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq), a method for mapping chromatin accessibility genome-wide. This method probes DNA accessibility with hyperactive Tn5 transposase, which inserts sequencing adapters into accessible regions of chromatin. Sequencing reads can then be used to infer regions of increased accessibility, as well as to map regions of transcription-factor binding and nucleosome position. The method is a fast and sensitive alternative to DNase-seq for assaying chromatin accessibility genome-wide, or to MNase-seq for assaying nucleosome positions in accessible regions of the genome. © 2015 by John Wiley & Sons, Inc.

    View details for DOI 10.1002/0471142727.mb2129s109

    View details for PubMedID 25559105

  • A Conditional System to Specifically Link Disruption of Protein-Coding Function with Reporter Expression in Mice CELL REPORTS Chiou, S., Kim-Kiselak, C., Risca, V. I., Heimann, M. K., Chuang, C., Burds, A. A., Greenleaf, W. J., Jacks, T. E., Feldser, D. M., Winslow, M. M. 2014; 7 (6): 2078-2086
  • A conditional system to specifically link disruption of protein-coding function with reporter expression in mice. Cell reports Chiou, S., Kim-Kiselak, C., Risca, V. I., Heimann, M. K., Chuang, C., Burds, A. A., Greenleaf, W. J., Jacks, T. E., Feldser, D. M., Winslow, M. M. 2014; 7 (6): 2078-2086

    Abstract

    Conditional gene deletion in mice has contributed immensely to our understanding of many biological and biomedical processes. Despite an increasing awareness of nonprotein-coding functional elements within protein-coding transcripts, current gene-targeting approaches typically involve simultaneous ablation of noncoding elements within targeted protein-coding genes. The potential for protein-coding genes to have additional noncoding functions necessitates the development of novel genetic tools capable of precisely interrogating individual functional elements. We present a strategy that couples Cre/loxP-mediated conditional gene disruption with faithful GFP reporter expression in mice in which Cre-mediated stable inversion of a splice acceptor-GFP-splice donor cassette concurrently disrupts protein production and creates a GFP fusion product. Importantly, cassette inversion maintains physiologic transcript structure, thereby ensuring proper microRNA-mediated regulation of the GFP reporter, as well as maintaining expression of nonprotein-coding elements. To test this potentially generalizable strategy, we generated and analyzed mice with this conditional knockin reporter targeted to the Hmga2 locus.

    View details for DOI 10.1016/j.celrep.2014.05.031

    View details for PubMedID 24931605

    View details for PubMedCentralID PMC4113058

  • Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nature biotechnology Buenrostro, J. D., Araya, C. L., Chircus, L. M., Layton, C. J., Chang, H. Y., Snyder, M. P., Greenleaf, W. J. 2014; 32 (6): 562-568

    Abstract

    RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of a fluorescently labeled protein to >10(7) RNA targets generated on a flow cell surface by in situ transcription and intermolecular tethering of RNA to DNA. Studying the MS2 coat protein, we decompose the binding energy contributions from primary and secondary RNA structure, and observe that differences in affinity are often driven by sequence-specific changes in both association and dissociation rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis and a long-hypothesized, structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNA-MaP) provides generalizable insight into the biophysical basis and evolutionary consequences of sequence-function relationships.

    View details for DOI 10.1038/nbt.2880

    View details for PubMedID 24727714

  • A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science Larson, M. H., Mooney, R. A., Peters, J. M., Windgassen, T., Nayak, D., Gross, C. A., Block, S. M., Greenleaf, W. J., Landick, R., Weissman, J. S. 2014; 344 (6187): 1042-1047

    Abstract

    Transcription by RNA polymerase (RNAP) is interrupted by pauses that play diverse regulatory roles. Although individual pauses have been studied in vitro, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, we identified a 16-nucleotide consensus pause sequence in Escherichia coli that accounts for known regulatory pause sites as well as ~20,000 new in vivo pause sites. In vitro single-molecule and ensemble analyses demonstrate that these pauses result from RNAP-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence also leads to pausing by RNAPs from diverse lineages and is enriched at translation start sites in both E. coli and Bacillus subtilis. Our results thus reveal a conserved mechanism unifying known and newly identified pause events.

    View details for DOI 10.1126/science.1251871

    View details for PubMedID 24789973

  • Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy. Neuromuscular disorders Couthouis, J., Raphael, A. R., Siskind, C., Findlay, A. R., Buenrostro, J. D., Greenleaf, W. J., Vogel, H., Day, J. W., Flanigan, K. M., Gitler, A. D. 2014; 24 (5): 431-435

    Abstract

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D.

    View details for DOI 10.1016/j.nmd.2014.01.014

    View details for PubMedID 24594375

  • Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position NATURE METHODS Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., Greenleaf, W. J. 2013; 10 (12): 1213-?

    Abstract

    We describe an assay for transposase-accessible chromatin using sequencing (ATAC-seq), based on direct in vitro transposition of sequencing adaptors into native chromatin, as a rapid and sensitive method for integrative epigenomic analysis. ATAC-seq captures open chromatin sites using a simple two-step protocol with 500-50,000 cells and reveals the interplay between genomic locations of open chromatin, DNA-binding proteins, individual nucleosomes and chromatin compaction at nucleotide resolution. We discovered classes of DNA-binding factors that strictly avoided, could tolerate or tended to overlap with nucleosomes. Using ATAC-seq maps of human CD4(+) T cells from a proband obtained on consecutive days, we demonstrated the feasibility of analyzing an individual's epigenome on a timescale compatible with clinical decision-making.

    View details for DOI 10.1038/NMETH.2688

    View details for Web of Science ID 000327698100025

    View details for PubMedID 24097267

  • Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries AMERICAN JOURNAL OF HUMAN GENETICS Carpenter, M. L., Buenrostro, J. D., Valdiosera, C., Schroeder, H., Allentoft, M. E., Sikora, M., Rasmussen, M., Gravel, S., Guillen, S., Nekhrizov, G., Leshtakov, K., Dimitrova, D., Theodossiev, N., Pettener, D., Luiselli, D., Sandoval, K., Moreno-Estrada, A., Li, Y., Wang, J., Gilbert, M. T., Willerslev, E., Greenleaf, W. J., Bustamante, C. D. 2013; 93 (5): 852-864

    Abstract

    Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062-147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217-73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples.

    View details for DOI 10.1016/j.ajhg.2013.10.002

    View details for Web of Science ID 000326996600006

  • Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries. American journal of human genetics Carpenter, M. L., Buenrostro, J. D., Valdiosera, C., Schroeder, H., Allentoft, M. E., Sikora, M., Rasmussen, M., Gravel, S., Guillén, S., Nekhrizov, G., Leshtakov, K., Dimitrova, D., Theodossiev, N., Pettener, D., Luiselli, D., Sandoval, K., Moreno-Estrada, A., Li, Y., Wang, J., Gilbert, M. T., Willerslev, E., Greenleaf, W. J., Bustamante, C. D. 2013; 93 (5): 852-64

    Abstract

    Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062-147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217-73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples.

    View details for DOI 10.1016/j.ajhg.2013.10.002

    View details for PubMedID 24568772

  • Digital Polymerase Chain Reaction in an Array of Femtoliter Polydimethylsiloxane Microreactors ANALYTICAL CHEMISTRY Men, Y., Fu, Y., Chen, Z., Sims, P. A., Greenleaf, W. J., Huang, Y. 2012; 84 (10): 4262-4266

    Abstract

    We developed a simple, compact microfluidic device to perform high dynamic-range digital polymerase chain reaction (dPCR) in an array of isolated 36-femtoliter microreactors. The density of the microreactors exceeded 20000/mm(2). This device, made from polydimethylsiloxane (PDMS), allows the samples to be loaded into all microreactors simultaneously. The microreactors are completely sealed through the deformation of a PDMS membrane. The small volume of the microreactors ensures a compact device with high reaction efficiency and low reagent and sample consumption. Future potential applications of this platform include multicolor dPCR and massively parallel dPCR for next generation sequencing library preparation.

    View details for DOI 10.1021/ac300761n

    View details for Web of Science ID 000303965500005

    View details for PubMedID 22482776

  • Fluorogenic DNA sequencing in PDMS microreactors NATURE METHODS Sims, P. A., Greenleaf, W. J., Duan, H., Xie, S. 2011; 8 (7): 575-U84

    Abstract

    We developed a multiplex sequencing-by-synthesis method combining terminal phosphate-labeled fluorogenic nucleotides (TPLFNs) and resealable polydimethylsiloxane (PDMS) microreactors. In the presence of phosphatase, primer extension by DNA polymerase using nonfluorescent TPLFNs generates fluorophores, which are confined in the microreactors and detected. We immobilized primed DNA templates in the microreactors, then sequentially introduced one of the four identically labeled TPLFNs, sealed the microreactors and recorded a fluorescence image after template-directed primer extension. With cycle times of <10 min, we demonstrate 30 base reads with ∼99% raw accuracy. Our 'fluorogenic pyrosequencing' offers benefits of pyrosequencing, such as rapid turnaround, one-color detection and generation of native DNA, along with high detection sensitivity and simplicity of parallelization because simultaneous real-time monitoring of all microreactors is not required.

    View details for DOI 10.1038/NMETH.1629

    View details for Web of Science ID 000292194500021

    View details for PubMedID 21666670

  • AN OPTICAL APPARATUS FOR ROTATION AND TRAPPING METHODS IN ENZYMOLOGY, VOL 475: SINGLE MOLECULE TOOLS, PT B Gutierrez-Medina, B., Andreasson, J. O., Greenleaf, W. J., Laporta, A., Block, S. M. 2010; 475: 377-404

    Abstract

    We present details of the design, construction, and testing of a single-beam optical tweezers apparatus capable of measuring and exerting torque, as well as force, on microfabricated, optically anisotropic particles (an "optical torque wrench"). The control of angular orientation is achieved by rotating the linear polarization of a trapping laser with an electro-optic modulator (EOM), which affords improved performance over previous designs. The torque imparted to the trapped particle is assessed by measuring the difference between left- and right-circular components of the transmitted light, and constant torque is maintained by feeding this difference signal back into a custom-designed electronic servo loop. The limited angular range of the EOM (+/-180 degrees ) is extended by rapidly reversing the polarization once a threshold angle is reached, enabling the torque clamp to function over unlimited, continuous rotations at high bandwidth. In addition, we developed particles suitable for rotation in this apparatus using microfabrication techniques. Altogether, the system allows for the simultaneous application of forces (approximately 0.1-100 pN) and torques (approximately 1-10,000 pN nm) in the study of biomolecules. As a proof of principle, we demonstrate how our instrument can be used to study the supercoiling of single DNA molecules.

    View details for DOI 10.1016/S0076-6879(10)75015-1

    View details for Web of Science ID 000280733800015

    View details for PubMedID 20627165

    View details for PubMedCentralID PMC2965466

  • Applied force reveals mechanistic and energetic details of transcription termination CELL Larson, M. H., Greenleaf, W. J., Landick, R., Block, S. M. 2008; 132 (6): 971-982

    Abstract

    Transcription termination by bacterial RNA polymerase (RNAP) occurs at sequences coding for a GC-rich RNA hairpin followed by a U-rich tract. We used single-molecule techniques to investigate the mechanism by which three representative terminators (his, t500, and tR2) destabilize the elongation complex (EC). For his and tR2 terminators, loads exerted to bias translocation did not affect termination efficiency (TE). However, the force-dependent kinetics of release and the force-dependent TE of a mutant imply a forward translocation mechanism for the t500 terminator. Tension on isolated U-tracts induced transcript release in a manner consistent with RNA:DNA hybrid shearing. We deduce that different mechanisms, involving hypertranslocation or shearing, operate at terminators with different U-tracts. Tension applied to RNA at terminators suggests that closure of the final 2-3 hairpin bases destabilizes the hybrid and that competing RNA structures modulate TE. We propose a quantitative, energetic model that predicts the behavior for these terminators and mutant variants.

    View details for DOI 10.1016/j.cell.2008.01.027

    View details for Web of Science ID 000254273600016

    View details for PubMedID 18358810

    View details for PubMedCentralID PMC2295211

  • Direct observation of hierarchical folding in single riboswitch aptamers SCIENCE Greenleaf, W. J., Frieda, K. L., Foster, D. A., Woodside, M. T., Block, S. M. 2008; 319 (5863): 630-633

    Abstract

    Riboswitches regulate genes through structural changes in ligand-binding RNA aptamers. With the use of an optical-trapping assay based on in situ transcription by a molecule of RNA polymerase, single nascent RNAs containing pbuE adenine riboswitch aptamers were unfolded and refolded. Multiple folding states were characterized by means of both force-extension curves and folding trajectories under constant force by measuring the molecular contour length, kinetics, and energetics with and without adenine. Distinct folding steps correlated with the formation of key secondary or tertiary structures and with ligand binding. Adenine-induced stabilization of the weakest helix in the aptamer, the mechanical switch underlying regulatory action, was observed directly. These results provide an integrated view of hierarchical folding in an aptamer, demonstrating how complex folding can be resolved into constituent parts, and supply further insights into tertiary structure formation.

    View details for DOI 10.1126/science.1151298

    View details for Web of Science ID 000252772000044

    View details for PubMedID 18174398

    View details for PubMedCentralID PMC2640945

  • Single-molecule studies of RNA polymerase: Motoring along ANNUAL REVIEW OF BIOCHEMISTRY Herbert, K. M., Greenleaf, W. J., Block, S. M. 2008; 77: 149-176

    Abstract

    Single-molecule techniques have advanced our understanding of transcription by RNA polymerase (RNAP). A new arsenal of approaches, including single-molecule fluorescence, atomic-force microscopy, magnetic tweezers, and optical traps (OTs) have been employed to probe the many facets of the transcription cycle. These approaches supply fresh insights into the means by which RNAP identifies a promoter, initiates transcription, translocates and pauses along the DNA template, proofreads errors, and ultimately terminates transcription. Results from single-molecule experiments complement the knowledge gained from biochemical and genetic assays by facilitating the observation of states that are otherwise obscured by ensemble averaging, such as those resulting from heterogeneity in molecular structure, elongation rate, or pause propensity. Most studies to date have been performed with bacterial RNAP, but work is also being carried out with eukaryotic polymerase (Pol II) and single-subunit polymerases from bacteriophages. We discuss recent progress achieved by single-molecule studies, highlighting some of the unresolved questions and ongoing debates.

    View details for DOI 10.1146/annurev.biochem.77.073106.100741

    View details for Web of Science ID 000257596800008

    View details for PubMedID 18410247

    View details for PubMedCentralID PMC2854675

  • Molecule by molecule, the physics and chemistry of life: SMB 2007. Nature chemical biology Block, S. M., Larson, M. H., Greenleaf, W. J., Herbert, K. M., Guydosh, N. R., Anthony, P. C. 2007; 3 (4): 193-197

    Abstract

    Interdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference.

    View details for PubMedID 17372599

  • High-resolution, single-molecule measurements of biomolecular motion ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE Greenleaf, W. J., Woodside, M. T., Block, S. M. 2007; 36: 171-190

    Abstract

    Many biologically important macromolecules undergo motions that are essential to their function. Biophysical techniques can now resolve the motions of single molecules down to the nanometer scale or even below, providing new insights into the mechanisms that drive molecular movements. This review outlines the principal approaches that have been used for high-resolution measurements of single-molecule motion, including centroid tracking, fluorescence resonance energy transfer, magnetic tweezers, atomic force microscopy, and optical traps. For each technique, the principles of operation are outlined, the capabilities and typical applications are examined, and various practical issues for implementation are considered. Extensions to these methods are also discussed, with an eye toward future application to outstanding biological problems.

    View details for DOI 10.1146/annurev.biophys.36.101106.101451

    View details for Web of Science ID 000247773000009

    View details for PubMedID 17328679

    View details for PubMedCentralID PMC1945240

  • High-resolution, single-molecule optical trapping measurements of transcription with basepair accuracy: Instrumentation and methods Conference on Optical Trapping and Optical Micromanipulation IV Greenleaf, W. J., Frieda, K. L., Abbondanzieri, E. A., Woodside, M. T., Block, S. M. SPIE-INT SOC OPTICAL ENGINEERING. 2007

    View details for DOI 10.1117/12.739631

    View details for Web of Science ID 000251162100004

  • Single-molecule, motion-based DNA sequencing using RNA polymerase SCIENCE Greenleaf, W. J., Block, S. M. 2006; 313 (5788): 801-801

    Abstract

    We present a method for sequencing DNA that relies on the motion of single RNA polymerase molecules. When a given nucleotide species limits the rate of transcription, polymerase molecules pause at positions corresponding to the rare base. An ultrastable optical trapping apparatus capable of base pair resolution was used to monitor transcription under limiting amounts of each of the four nucleotide species. From the aligned patterns of pauses recorded from as few as four molecules, we determined the DNA sequence. This proof of principle demonstrates that the motion of a processive nucleic acid enzyme may be used to extract sequence information directly from DNA.

    View details for DOI 10.1126/science.1130105

    View details for Web of Science ID 000239671300049

    View details for PubMedID 16902131

    View details for PubMedCentralID PMC1865524

  • Direct observation of base-pair stepping by RNA polymerase NATURE Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., Block, S. M. 2005; 438 (7067): 460-465

    Abstract

    During transcription, RNA polymerase (RNAP) moves processively along a DNA template, creating a complementary RNA. Here we present the development of an ultra-stable optical trapping system with ångström-level resolution, which we used to monitor transcriptional elongation by single molecules of Escherichia coli RNAP. Records showed discrete steps averaging 3.7 +/- 0.6 A, a distance equivalent to the mean rise per base found in B-DNA. By combining our results with quantitative gel analysis, we conclude that RNAP advances along DNA by a single base pair per nucleotide addition to the nascent RNA. We also determined the force-velocity relationship for transcription at both saturating and sub-saturating nucleotide concentrations; fits to these data returned a characteristic distance parameter equivalent to one base pair. Global fits were inconsistent with a model for movement incorporating a power stroke tightly coupled to pyrophosphate release, but consistent with a brownian ratchet model incorporating a secondary NTP binding site.

    View details for DOI 10.1038/nature04268

    View details for Web of Science ID 000233458200041

    View details for PubMedID 16284617

    View details for PubMedCentralID PMC1356566

  • Passive all-optical force clamp for high-resolution laser trapping PHYSICAL REVIEW LETTERS Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A., Block, S. M. 2005; 95 (20)

    Abstract

    Optical traps are useful for studying the effects of forces on single molecules. Feedback-based force clamps are often used to maintain a constant load, but the response time of the feedback limits bandwidth and can introduce instability. We developed a novel force clamp that operates without feedback, taking advantage of the anharmonic region of the trapping potential where the differential stiffness vanishes. We demonstrate the utility of such a force clamp by measuring the unfolding of DNA hairpins and the effect of trap stiffness on opening distance and transition rates.

    View details for DOI 10.1103/PhysRevLett.95.208102

    View details for Web of Science ID 000233243500069

    View details for PubMedID 16384102

    View details for PubMedCentralID PMC1357091