Independent Labs, Institutes, and Centers (Dean of Research)


Showing 141-160 of 553 Results

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • James Ferrell

    James Ferrell

    Professor of Chemical and Systems Biology and of Biochemistry

    Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.

  • Andrew Fire

    Andrew Fire

    George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics

    Current Research and Scholarly InterestsWe study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".

  • Daniel Fisher

    Daniel Fisher

    David Starr Jordan Professor

    Current Research and Scholarly InterestsEvolutionary & ecological dynamics & diversity, microbial, expt'l, & cancer

  • Paul Graham Fisher, MD

    Paul Graham Fisher, MD

    Beirne Family Professor of Pediatric Neuro-Oncology, Professor of Pediatrics and, by courtesy, of Neurosurgery and of Epidemiology and Population Health

    Current Research and Scholarly InterestsClinical neuro-oncology: My research explores the epidemiology, natural history, and disease patterns of brain tumors and other cancers in childhood, as well as prospective clinical trials for treating these neoplasms. Research interests also include neurologic effects of cancer and its therapies.

  • Philip Andrew Fisher

    Philip Andrew Fisher

    Excellence in Learning Graduate School of Education Professor

    BioDr. Philip Fisher is the Excellence in Learning Professor in the Graduate School of Education at Stanford. His research, which has been continuously funded by the National Institutes of Health since 1999, focuses on developing and evaluating scalable early childhood interventions in communities, and on translating scientific knowledge regarding healthy development under conditions of adversity for use in social policy and programs. He is particularly interested in the effects of early stressful experiences on children's neurobiological and psychological development, and in prevention and treatment programs for improving children's functioning in areas such as relationships with caregivers and peers, social-emotional development, and academic achievement. He is currently the lead investigator in the ongoing RAPID-EC project, a national survey on the well-being of households with young children during the COVID-19 pandemic. Dr. Fisher is also interested in the brain's plasticity in the context of therapeutic interventions. He is the developer of a number of widely implemented evidence-based interventions for supporting healthy child development in the context of social and economic adversity, including Treatment Foster Care Oregon for Preschoolers (TFCO-P), Kids in Transition to School (KITS), and Filming Interactions to Nurture Development (FIND). He has published over 200 scientific papers in peer reviewed journals. He is the recipient of the 2012 Society for Prevention Research Translational Science Award, and a 2019 Fellow of the American Psychological Society.

  • Robert Fisher, MD, PhD

    Robert Fisher, MD, PhD

    The Maslah Saul, MD, Professor and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsDr. Fisher is interested in clincal, laboratory and translational aspects of epilepsy research. Prior work has included: electrical deep brain stimulation for epilepsy, studied in laboratory models and clinical trials; drug delivery to a seizure focus; mechanisms of absence epilepsy studied with in vitro slices of brain thalamus; hyperthermic seizures; diagnosis and treatment of non-epileptic seizures, the post-ictal state; driving and epilepsy; new antiepileptic drugs; surgery for epilepsy.

  • Matthew Fitzgerald, PhD

    Matthew Fitzgerald, PhD

    Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    Current Research and Scholarly InterestsMy research encompasses several translational projects. One focus is to modify the routine audiologic test battery such that it places equal weight on hearing acuity and hearing function. This work includes measures of speech in noise, or electrophysiologic responses such as the FFR. I also explore tools to better assess and maximize performance in users of hearing aids and cochlear implants. Finally, I am also investigating the benefits of telemedicine, and new treatments for tinnitus.

  • Pamela Flood

    Pamela Flood

    Adjunct Clinical Professor, Anesthesiology, Perioperative and Pain Medicine

    BioDr. Flood is a Professor at Stanford University who is fellowship trained in Pain Medicine and Obstetric Anesthesiology. She specializes in the treatment of chronic pelvic pain and multiple aspects of women's health including the prevention of chronic pain after childbirth. Research interests include the role of multimodal treatment in chronic pain conditions and prevention of persistent opioid use. Her research has spanned from detailed pharmacodynamic analysis, clinical trials to population health.

  • Sai Folmsbee, MD, PhD

    Sai Folmsbee, MD, PhD

    Clinical Assistant Professor, Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsMy current research interest is the intersection of psychiatry and neuroimmunology. I am currently collaborating with Stanford Neuroimmunology in a retrospective analysis of patient data to determine the relationship between psychaitric medications and clinical outcomes in hospitalized patients with mutliple sclerosis, autoimmune encephalitis, and neuromyelitis optica.

  • Polly Fordyce

    Polly Fordyce

    Associate Professor of Bioengineering and of Genetics
    On Leave from 01/01/2014 To 08/31/2024

    Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.

  • Emily Fox

    Emily Fox

    Professor of Statistics and of Computer Science

    BioEmily Fox is a Professor in the Departments of Statistics and Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.

    Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in modeling complex time series arising in health, particularly from health wearables and neuroimaging modalities.

  • Michael Frank

    Michael Frank

    Benjamin Scott Crocker Professor of Human Biology and Professor, by courtesy, of Linguistics

    Current Research and Scholarly InterestsHow do we learn to communicate using language? I study children's language learning and how it interacts with their developing understanding of the social world. I use behavioral experiments, computational tools, and novel measurement methods like large-scale web-based studies, eye-tracking, and head-mounted cameras.

  • Hunter Fraser

    Hunter Fraser

    Professor of Biology

    Current Research and Scholarly InterestsWe study the evolution of complex traits by developing new experimental and computational methods.

    Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing.

  • Shai Friedland

    Shai Friedland

    Professor of Medicine (Gastroenterology and Hepatology)

    Current Research and Scholarly Interests1. Gastrointestinal Endoscopy- Techniques and Outcomes
    2. Noninvasive colorectal cancer screening
    3. Medical device development in gastroenterology

  • Judith Frydman

    Judith Frydman

    Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics

    Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.

  • Takako Fujioka

    Takako Fujioka

    Associate Professor of Music

    BioResearch topics include neural oscillations for auditory perception, auditory-motor coupling, brain plasticity in development and aging, and recovery from stroke with music-supported therapy.

    Her post-doctoral and research-associate work at Rotman Research Institute in Toronto was supported by awards from the Canadian Institutes of Health Research. Her research continues to explore the biological nature of human musical ability by examining brain activities with non-invasive human neurophysiological measures such as magnetoencephalography (MEG) and electroencephalography (EEG).

  • Sanjiv Sam Gambhir, MD, PhD

    Sanjiv Sam Gambhir, MD, PhD

    Member, Bio-X

    Current Research and Scholarly InterestsMy laboratory focuses on merging advances in molecular biology with those in biomedical imaging to advance the field of molecular imaging. Imaging for the purpose of better understanding cancer biology and applications in gene and cell therapy, as well as immunotherapy are all being studied. A key long-term focus is the earlier detection of cancer by combining in vitro diagnostics and molecular imaging.

  • Xiaojing Gao

    Xiaojing Gao

    Assistant Professor of Chemical Engineering

    Current Research and Scholarly InterestsHow do we design biological systems as “smart medicine” that sense patients’ states, process the information, and respond accordingly? To realize this vision, we will tackle fundamental challenges across different levels of complexity, such as (1) protein components that minimize their crosstalk with human cells and immunogenicity, (2) biomolecular circuits that function robustly in different cells and are easy to deliver, (3) multicellular consortia that communicate through scalable channels, and (4) therapeutic modules that interface with physiological inputs/outputs. Our engineering targets include biomolecules, molecular circuits, viruses, and cells, and our approach combines quantitative experimental analysis with computational simulation. The molecular tools we build will be applied to diverse fields such as neurobiology and cancer therapy.