Independent Labs, Institutes, and Centers (Dean of Research)
Showing 1,921-1,930 of 2,059 Results
-
Paul J. Wang, MD
John R. and Ai Giak L. Singleton Director, Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsDr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang is committed to addressing disparities in care and is actively involved in increasing diversity in clinical trials.
-
Shan X. Wang
Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsShan Wang was named the Leland T. Edwards Professor in the School of Engineering in 2018. He directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.
-
Sui Wang, PhD
Assistant Professor of Ophthalmology
Current Research and Scholarly InterestsOur research focuses on unraveling the molecular mechanisms underlying retinal development and diseases. We employ genetic and genomic tools to explore how various retinal cell types, including neurons, glia, and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels. In addition, we investigate their interactions and collective contributions to maintain retinal integrity.
1. Investigating retinal development:
We utilize genetic tools and methods such as in vivo plasmid electroporation and CRISPR to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal development.
2. Understanding diabetes-induced cell-type-specific responses in the retina:
Diabetes triggers a range of multicellular responses in the retina, such as vascular lesions, glial dysfunction, and neurodegeneration, all of which contribute to retinopathy. We delve into the detailed molecular mechanisms underlying these diabetes-induced cell-type-specific responses and the pathogenesis of diabetic retinopathy.
3. Developing molecular tools for labeling and manipulation of specific cell types in vivo:
Cis-regulatory elements, particularly enhancers, play pivotal roles in directing tissue- and cell-type-specific expression. Our interest lies in identifying enhancers that can drive cell type-specific expression in the retina and brain. We incorporate these enhancers into plasmid or AAV-based delivery systems, enabling precise labeling and manipulation of specific cell types in vivo. -
Taia T. Wang, MD, PhD, MSCI
Associate Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology
Current Research and Scholarly InterestsLaboratory of Mechanisms in Human Immunity and Disease Pathogenesis
-
Xinnan Wang
Professor of Neurosurgery
Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.
-
Zhecheng Wang
Postdoctoral Scholar, Civil and Environmental Engineering
BioI am a HAI (Human-Centered AI) Postdoctoral Fellow at Stanford University. Here is my website: https://wangzhecheng.github.io
-
Victoria Ward
Clinical Associate Professor, Pediatrics
Current Research and Scholarly InterestsGlobal child health, digital health, preterm birth, human trafficking