Bio-X


Showing 481-500 of 1,076 Results

  • Maya M. Kasowski

    Maya M. Kasowski

    Assistant Professor of Pathology, of Medicine (Pulmonary, Allergy and Critical Care Medicine) and, by courtesy, of Genetics

    BioI am a clinical pathologist and assistant professor in the Departments of Medicine, Pathology, and Genetics (by courtesy) at Stanford. I completed my MD-PhD training at Yale University and my residency training and a post-doctoral fellowship in the Department of Genetics at Stanford University. My experiences as a clinical pathologist and genome scientist have made me passionate about applying cutting-edge technologies to primary patient specimens in order to characterize disease pathologies at the molecular level. The core focus of my lab is to study the mechanisms by which genetic variants influence the risk of disease through effects on intermediate molecular phenotypes.

  • Riitta Katila

    Riitta Katila

    W.M. Keck Professor and Professor of Management Science and Engineering

    Current Research and Scholarly InterestsThe question that drives Prof. Katila's research is how technology-based firms with significant resources can stay innovative. Her work lies at the intersection of the fields of technology, innovation, and strategy and focuses on strategies that enable organizations to discover, develop and commercialize technologies. She combines theory with longitudinal large-sample data (e.g., robotics, biomedical, platform and multi-industry datasets), background fieldwork, and state-of-the-art quantitative methods. The ultimate objective is to understand what makes technology-based firms successful.

    To answer this question, Prof. Katila conducts two interrelated streams of research. She studies (1) strategies that help firms leverage their existing resources (leverage stream), and (2) strategies through which firms can acquire new resources (acquisition stream) to create innovation. Her early contributions were firm centric while recent contributions focus on innovation in the context of competitive interaction and ecosystems.

    Professor Katila's work has appeared in the Academy of Management Journal, Administrative Science Quarterly, Organization Science, Strategic Entrepreneurship Journal, Strategy Science, Strategic Management Journal, Research Policy and other outlets. In her work, supported by the National Science Foundation, Katila examines how firms create new products successfully. Focusing on the robotics and medical device industries, she investigates how different search approaches, such as the exploitation of existing knowledge and the exploration for new knowledge, influence the kinds of new products that technology-intensive firms introduce.

  • Laurence Katznelson, MD

    Laurence Katznelson, MD

    Professor of Neurosurgery, Emeritus

    Current Research and Scholarly InterestsDr. Katznelson is an internationally known neuroendocrinologist and clinical researcher, with research expertise in the diagnosis and management of hypopituitarism, the effects of hormones on neurocognitive function, and the development of therapeutics for acromegaly and Cushing’s syndrome, and neuroendocrine tumors. Dr. Katznelson is the medical director of the multidisciplinary Stanford Pituitary Center, a program geared for patient management, clinical research and patient education

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor of Pediatrics, and Professor of Genetics

    Current Research and Scholarly InterestsMark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Electron Kebebew, MD, FACS

    Electron Kebebew, MD, FACS

    Harry A. Oberhelman, Jr. and Mark L. Welton Professor

    Current Research and Scholarly InterestsDr. Kebebew’s translational and clinical investigations have three main scientific goals: 1) to develop effective therapies for fatal, rare and neglected endocrine cancers, 2) to identify new methods, strategies and technologies for improving the diagnosis and treatment of endocrine neoplasms and the prognostication of endocrine cancers, and 3) to develop methods for precision treatment of endocrine tumors.

  • Corey Keller, MD, PhD

    Corey Keller, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    Current Research and Scholarly InterestsThe goal of my lab is to understand the fundamental principles of human brain plasticity and build trans-diagnostic real-time monitoring platforms for personalized neurotherapeutics.

    We use an array of neuroscience methods to better understand the basic principles of how to create change in brain circuits. We use this knowledge to develop more effective treatment strategies for depression and other psychiatric disorders.

  • Monroe Kennedy III

    Monroe Kennedy III

    Assistant Professor of Mechanical Engineering

    Current Research and Scholarly InterestsMy research focus is to develop technology that improves everyday life by anticipating and acting on the needs of human counterparts. My research can be divided into the following sub-categories: robotic assistants, connected devices and intelligent wearables. My Assistive Robotics and Manipulation lab focuses heavily on both the analytical and experimental components of assistive technology design.

  • Thomas Kenny

    Thomas Kenny

    Senior Associate Dean for Education and Student Affairs and Richard W. Weiland Professor in the School of Engineering

    BioKenny's group is researching fundamental issues and applications of micromechanical structures. These devices are usually fabricated from silicon wafers using integrated circuit fabrication tools. Using these techniques, the group builds sensitive accelerometers, infrared detectors, and force-sensing cantilevers. This research has many applications, including integrated packaging, inertial navigation, fundamental force measurements, experiments on bio-molecules, device cooling, bio-analytical instruments, and small robots. Because this research field is multidisciplinary in nature, work in this group is characterized by strong collaborations with other departments, as well as with local industry.

  • Oussama Khatib

    Oussama Khatib

    Weichai Professor and Professor, by courtesy, of Electrical Engineering

    BioRobotics research on novel control architectures, algorithms, sensing, and human-friendly designs for advanced capabilities in complex environments. With a focus on enabling robots to interact cooperatively and safely with humans and the physical world, these studies bring understanding of human movements for therapy, athletic training, and performance enhancement. Our work on understanding human cognitive task representation and physical skills is enabling transfer for increased robot autonomy. With these core capabilities, we are exploring applications in healthcare and wellness, industry and service, farms and smart cities, and dangerous and unreachable settings -- deep in oceans, mines, and space.

  • Paul A. Khavari, MD, PhD

    Paul A. Khavari, MD, PhD

    Carl J. Herzog Professor of Dermatology in the School of Medicine

    Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Butrus Khuri-Yakub

    Butrus Khuri-Yakub

    Professor (Research) of Electrical Engineering, Emeritus

    BioButrus (Pierre) T. Khuri-Yakub is a Professor of Electrical Engineering at Stanford University. He received the BS degree from the American University of Beirut, the MS degree from Dartmouth College, and the Ph.D. degree from Stanford University, all in electrical engineering. His current research interests include medical ultrasound imaging and therapy, ultrasound neuro-stimulation, chemical/biological sensors, gas flow and energy flow sensing, micromachined ultrasonic transducers, and ultrasonic fluid ejectors. He has authored over 600 publications and has been principal inventor or co-inventor of 107 US and international issued patents. He was awarded the Medal of the City of Bordeaux in 1983 for his contributions to Nondestructive Evaluation, the Distinguished Advisor Award of the School of Engineering at Stanford University in 1987, the Distinguished Lecturer Award of the IEEE UFFC society in 1999, a Stanford University Outstanding Inventor Award in 2004, Distinguished Alumnus Award of the School of Engineering of the American University of Beirut in 2005, Stanford Biodesign Certificate of Appreciation for commitment to educate, mentor and inspire Biodesgin Fellows, 2011, and 2011 recipient of IEEE Rayleigh award.

  • Mathew Kiang

    Mathew Kiang

    Assistant Professor of Epidemiology and Population Health (Epidemiology)

    BioI am an assistant professor in the Department of Epidemiology and Population Health. My research lies at the intersection of computational epidemiology and social epidemiology. Methodologically, my work revolves around combining disparate data sources in epidemiologically meaningful ways. For example, I work with individual-level, non-health data (e.g., GPS, accelerometer, and other sensor data from smartphones), traditional health data (e.g., survey, health systems, or death certificate data), and third-party data (e.g., cellphone providers or ad-tech data). To do this, I use a variety of methods such as joint Bayesian spatial models, traditional epidemiologic models, dynamical models, microsimulation, and demographic analysis. Substantively, my work focuses on socioeconomic and racial/ethnic inequities. For example, recently, my work has examined inequities in COVID-19 vaccine distribution, cause-specific excess mortality, and drug poisonings. I have an NIDA-funded R00 examining equitable ways to improve treatment for opioid use disorder across structurally disadvantaged groups and am Co-I on a NIDA-funded R21 examining ways to use novel data sources (such as social media) to predict surges in opioid-related mortality.

  • Juyong Brian Kim

    Juyong Brian Kim

    Assistant Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsThe lifetime risk of developing cardiovascular disease (CVD) is determined by the genetic makeup and exposure to modifiable risk factors. The Cardiovascular Link to Environmental ActioN (CLEAN) Lab is interested in understanding how various environmental pollutants (eg. tobacco, e-cigarettes, air pollution and wildfire) interact with genes to affect the transcriptome, epigenome, and eventually disease phenotype of CVD. The current focus is to investigate how different toxic exposures can adversely remodel the vascular wall leading to increased cardiac events. We intersect human genomic discoveries with animal models of disease, in-vitro and in-vivo systems of exposure, single-cell sequencing technologies to solve these questions. Additionally, we collaborate with various members of the Stanford community to develop biomarkers that will aid with detection and prognosis of CVD. We are passionate about the need to reduce the environmental effects on health through strong advocacy and outreach.
    (http://kimlab.stanford.edu)

  • Peter S. Kim

    Peter S. Kim

    Virginia and D. K. Ludwig Professor of Biochemistry

    Current Research and Scholarly InterestsOur research focuses on developing new strategies for vaccine creation. We also aim to generate vaccines targeting infectious agents that have eluded efforts to date. We integrate experimental approaches with protein language models to guide artificial evolution and enable efficient antibody and protein engineering. Our interdisciplinary approach aims to address critical global health challenges.

  • Seung K. Kim  M.D., Ph.D.

    Seung K. Kim M.D., Ph.D.

    KM Mulberry Professor, Professor of Developmental Biology, of Medicine (Endocrinology) and, by courtesy, of Pediatrics (Endocrinology)

    Current Research and Scholarly InterestsWe study the development of pancreatic islet cells using molecular, embryologic and genetic methods in several model systems, including mice, pigs, human pancreas, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. These approaches have informed efforts to generate replacement islets from renewable sources for diabetes.

  • David Kingsley

    David Kingsley

    Rudy J. and Daphne Donohue Munzer Professor in the School of Medicine

    Current Research and Scholarly InterestsWe use mice, stickleback fish, and humans to study the molecular basis of evolution and common diseases. By combining genetics and genomics, we have identified key DNA changes that control bone formation, limb patterning, hair color, brain evolution, and susceptibility to arthritis, schizophrenia, and bipolar disorder. We find that the same genetic mechanisms are often used repeatedly in nature, providing new insights into the origin of key traits in many different species, including ourselves.

  • Amanda Kirane, MD, PhD, FACS, FSSO

    Amanda Kirane, MD, PhD, FACS, FSSO

    Assistant Professor of Surgery (General Surgery)

    BioDr. Kirane is a fellowship-trained, board-certified specialist in complex general surgical oncology. She is an Assistant Professor in the Department of Surgery, Section of Surgical Oncology, at Stanford University School of Medicine. Dr. Kirane serves as Director of Cutaneous Surgical Oncology at the Stanford Cancer Center and her clinical practice focuses on the diagnosis and treatment of melanoma and other skin cancers. She partners closely with patients and families to provide the most effective treatment approach possible. For each patient, she tailors an evidence-based, personalized care plan that is innovative, comprehensive, and compassionate.

    Dr. Kirane is Principal Investigator of multiple studies in melanoma and mechanisms of resistance to immunotherapy, with focus on myeloid biology. Her current interests include immune response and novel therapies in melanoma, predictive modeling of patient responses using organoid technology, and translational biomarker development. She has led research into immune therapy for earlier stage melanoma using regionally directed therapy to augment immune response in melanoma and trials in surgical care in melanoma.

    The National Institutes of Health, American Society of Clinical Oncology, the Melanoma Research Alliance, and others have funded her research. She has co-authored articles on her discoveries in the Journal of Clinical Investigation, Nature Communications, Nature Genetics, Cancer Research, Journal of Surgical Oncology, Annals of Surgery, Annals of Surgical Oncology, and elsewhere. Topics include intratumoral therapy, biomarker development, macrophage biology in melanoma and immunotheraputic resistance, and patient-derived organoid modeling. Dr. Kirane has presented updates on the management of melanoma and other cancers to her peers at meetings of the American College of Surgeons, Society of Surgical Oncology, and Society for Immunotherapy in Cancer.

    Dr. Kirane has earned awards for her achievements in clinical care, research, and scholarship. The Society for Immunotherapy of Cancer, Society of Surgical Oncology, Memorial Sloan Kettering Cancer Center, and other prestigious organizations have honored her work. She is a fellow of the American College of Surgeons (FACS) and Society of Surgical Oncology (FSSO). She is a member of the Society for Immunotherapy of Cancer, American Association of Cancer Research, Society for Melanoma Research, Connective Tissue Oncology Society, Association of Academic Surgeons, and Association of Women Surgeons.

    She volunteers her time and expertise on behalf of the Melanoma Research Foundation, members of her community in need, STEM programs for girls, and other initiatives. She also is fellowship trained in Physician Wellness and Wellbeing and teaches somatic technique, mindfulness-based stress reduction, meditation, and breathwork.

  • Varvara A. Kirchner

    Varvara A. Kirchner

    Associate Professor of Surgery (Abdominal Transplantation) and, by courtesy, of Pediatrics

    BioDr. Kirchner completed her medical school, surgical residency and multi-organ transplant fellowship in adult and pediatric liver, pancreas, kidney transplantation and total pancreatectomy with islet auto-transplantation at the University of Minnesota. She underwent further training in living donor liver transplantation and hepatobiliary surgery at the Asan Medical Center, Seoul, South Korea. Her clinical practice involves living and deceased donor liver and kidney transplantation in adult and pediatric patients as well as total pancreatectomy with islet auto-transplantation for patients with chronic and acute recurrent pancreatitis. She currently serves as Surgical Director of the Islet Cell Auto-Transplant at Stanford Children’s and Associate Director of the Living Donor Liver Transplant Program at the Division of Abdominal Transplantation. Dr. Kirchner’s research focuses on the biology of aging, cellular and solid organ transplantation. Her specific interests are in auto-islet transplantation, iPSC-derived hepatocyte therapies and liver regeneration. Dr. Kirchner's research on the impact of donor age on generation of iPSC-derived hepatocyte-like cells is supported by the NIA K08 Faculty Development Award. She is an active member of the American Society of Transplant Surgeons and the International Liver Transplantation Society.