Bio-X


Showing 1-20 of 92 Results

  • Rosa Bacchetta

    Rosa Bacchetta

    Associate Professor (Research) of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsIn the coming years, I plan to further determine the genetic and immunological basis of diseases with autoimmunity or immune dysregulation in children. I believe that much can still be learned from the in depth mechanistic studies of pediatric autoimmune diseases. Genomic analysis of the patients' samples has become possible which may provide a rapid indication of altered target molecules. I plan to implement robust functional studies to define the consequences of these genetic abnormalities and bridge them to the patient's clinical phenotype.

    Understanding functional consequences of gene mutations in single case/family first and then validating the molecular and cellular defects in other patients with similar phenotypes, will anticipate and complement cellular and gene therapy strategies.

    For further information please visit the Bacchetta Lab website:
    http://med.stanford.edu/bacchettalab.html

  • Stephen A. Baccus

    Stephen A. Baccus

    Professor of Neurobiology

    Current Research and Scholarly InterestsWe study how the neural circuitry of the vertebrate retina encodes visual information and performs computations. To control and measure the retinal circuit, we present visual images while performing simultaneous two-photon imaging and multielectrode recording. We perturb the circuit as it operates using simultaneous intracellular current injection and multielectrode recording, and use the resulting large data sets to construct models of retinal computation.

  • Jeremy Bailenson

    Jeremy Bailenson

    Thomas More Storke Professor, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Education
    On Leave from 10/01/2023 To 06/30/2024

    BioJeremy Bailenson is founding director of Stanford University’s Virtual Human Interaction Lab, Thomas More Storke Professor in the Department of Communication, Professor (by courtesy) of Education, Professor (by courtesy) Program in Symbolic Systems, and a Senior Fellow at the Woods Institute for the Environment. He has served as Director of Graduate Studies in the Department of Communication for over a decade. He earned a B.A. from the University of Michigan in 1994 and a Ph.D. in cognitive psychology from Northwestern University in 1999. He spent four years at the University of California, Santa Barbara as a Post-Doctoral Fellow and then an Assistant Research Professor.

    Bailenson studies the psychology of Virtual and Augmented Reality, in particular how virtual experiences lead to changes in perceptions of self and others. His lab builds and studies systems that allow people to meet in virtual space, and explores the changes in the nature of social interaction. His most recent research focuses on how virtual experiences can transform education, environmental conservation, empathy, and health. He is the recipient of the Dean’s Award for Distinguished Teaching at Stanford. In 2020, IEEE recognized his work with “The Virtual/Augmented Reality Technical Achievement Award”.

    He has published more than 200 academic papers, spanning the fields of communication, computer science, education, environmental science, law, linguistics, marketing, medicine, political science, and psychology. His work has been continuously funded by the National Science Foundation for over 25 years.

    His first book Infinite Reality, co-authored with Jim Blascovich, emerged as an Amazon Best-seller eight years after its initial publication, and was quoted by the U.S. Supreme Court. His new book, Experience on Demand, was reviewed by The New York Times, The Wall Street Journal, The Washington Post, Nature, and The Times of London, and was an Amazon Best-seller.

    He has written opinion pieces for The Washington Post, The Wall Street Journal, Harvard Business Review, CNN, PBS NewsHour, Wired, National Geographic, Slate, The San Francisco Chronicle, TechCrunch, and The Chronicle of Higher Education, and has produced or directed six Virtual Reality documentary experiences which were official selections at the Tribeca Film Festival. His lab has exhibited VR in hundreds of venues ranging from The Smithsonian to The Superbowl.

  • Michael Baiocchi

    Michael Baiocchi

    Associate Professor of Epidemiology and Population Health and, by courtesy, of Statistics and of Medicine (Stanford Prevention Research Center)

    BioProfessor Baiocchi is a PhD statistician in Stanford University's Epidemiology and Population Health Department. He thinks a lot about behavioral interventions and how to rigorously evaluate if and how they work. Methodologically, his work focuses on creating statistically rigorous methods for causal inference that are transparent and easy to critique. He designed -- and was the principle investigator for -- two large randomized studies of interventions to prevent sexual assault in the settlements of Nairobi, Kenya.

    Professor Baiocchi is an interventional statistician (i.e., grounded in both the creation and evaluation of interventions). The unifying idea in his research is that he brings rigorous, quantitative approaches to bear upon messy, real-world questions to better people's lives.

  • Julie Baker

    Julie Baker

    Professor of Genetics

    Current Research and Scholarly InterestsWe examine how cells communicate and function during fetal development. The work in my laboratory focuses on the establishment of specific cell fates using genomics to decipher interactions between chromatin and developmental signaling cascades, between genomes and rapidly evolving cell types, and between genomic copy number variation and gene expression. In recent years we have focused on the vastly understudied biology of the trophoblast lineage, particularly how this lineage evolved.

  • Karthik Balakrishnan, MD, MPH, FAAP, FACS

    Karthik Balakrishnan, MD, MPH, FAAP, FACS

    Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsDr. Balakrishnan's research focuses on innovative ways to improve and standardize treatments and measure outcomes in complex pediatric airway and aerodigestive conditions , as well as ways to reduce treatment costs and medical errors. By improving outcomes and reducing costs, he aims to improve the value of care, while also optimizing patient and caregiver experience during the care process.

  • Nicholas Bambos

    Nicholas Bambos

    Richard W. Weiland Professor in the School of Engineering and Professor of Electrical Engineering

    BioNick Bambos is R. Weiland Professor in the School of Engineering at Stanford University, having a joint appointment in the Department of Electrical Engineering and the Department of Management Science & Engineering. He has been the Fortinet Founders Department Chair of the Management Science & Engineering Department (2016 – 20).

    He heads the Computer Systems Performance Engineering Lab (Perf-Lab) at Stanford, comprised of doctoral students and industry visitors engaged in various research projects, and was the Director (1999 – 2005) of the Stanford Networking Research Center (a research project of about $30M). He has published over 300 peer-reviewed research publications and graduated over 40 doctoral students (including two post-doctoral ones), who have moved on to leadership positions in academia, the Silicon Valley industries and technology startups, finance and venture capital, etc.

    His research interests are in architecture and high-performance engineering of computer systems and networks, as well as data analytics with an emphasis on medical and health-care analytics. His research contributions span the areas of networking and the Internet, cloud computing and data centers, multimedia streaming, computer security, digital health, etc. His methodological interests and contributions span the areas of network control, online task scheduling, routing and distributed processing, machine learning and artificial intelligence, etc.

    He received his Ph.D. (1989) in Electrical Engineering & Computer Sciences from the University of California at Berkeley. Before joining Stanford in 1996, he served as assistant professor (1989 – 95) and tenured associate professor (1995 – 96) of Electrical Engineering at the University of California at Los Angeles (UCLA).

    He has received several best research paper awards and has been the Cisco Systems Faculty Development Chair and the David Morgenthaler Faculty Scholar at Stanford. He has won the IBM Faculty Award, as well as the National Young Investigator Award and the Research Initiation Award from the National Science Foundation. He has been a Berkeley U.C. Regents Fellow, an E. C. Anthony Fellow, and a D. & S. Gale Fellow.

    He has served on various editorial boards of research journals, scientific boards of research labs, international technical and scientific committees, and technical review panels for networking and computing technologies. He has also served on corporate technical boards, as consultant and co-founder of technology start-up companies, and as expert witness in high-profile patent litigation and other legal cases involving information technologies.

  • Niaz Banaei

    Niaz Banaei

    Professor of Pathology and of Medicine (Infectious Diseases)

    Current Research and Scholarly InterestsHis research interests include (1) development, assessment, and improvement of novel infectious diseases diagnostics, (2) enhancing the quality of C. difficile diagnostic results, and (3) characterization of M. tuberculosis virulence determinants.

  • Steven Banik

    Steven Banik

    Assistant Professor of Chemistry

    BioSteven Banik’s research interests center on rewiring mammalian biology and chemical biotechnology development using molecular design and construction. Projects in the Banik lab combine chemical biology, organic chemistry, protein engineering, cell and molecular biology to precisely manipulate the biological machines present in mammalian cells. Projects broadly aim to perform new functions that shed light on regulatory machinery and the potential scope of mammalian biology. A particular focus is the study of biological mechanisms that can be coopted by synthetic molecules (both small molecules and proteins). These concepts are applied to develop new therapeutic strategies for treating aging-related disorders, genetic diseases, and cancer.

    Prior to joining the faculty at Stanford, Steven was a NIH and Burroughs CASI postdoctoral fellow advised by Prof. Carolyn Bertozzi at Stanford. His postdoctoral research developed approaches for targeted protein degradation from the extracellular space with lysosome targeting chimeras (LYTACs). He received his Ph.D. from Harvard University in 2016, where he worked with Prof. Eric Jacobsen on synthetic methods for the selective, catalytic difluorination of organic molecules and new approaches for generating and controlling reactive cationic intermediates in asymmetric catalysis.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor and Professor, by courtesy, of Materials Science and Engineering and of Chemistry

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 80 US patents with a Google Scholar H-index 210.

    Bao is a member of the US National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.

    Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.

    Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001.

  • Maria Barna

    Maria Barna

    Associate Professor of Genetics

    Current Research and Scholarly InterestsOur lab studies how intricate control of gene expression and cell signaling is regulated on a minute-by-minute basis to give rise to the remarkable diversity of cell types and tissue morphology that form the living blueprints of developing organisms. Work in the Barna lab is presently split into two main research efforts. The first is investigating ribosome-mediated control of gene expression genome-wide in space and time during cellular differentiation and organismal development. This research is opening a new field of study in which we apply sophisticated mass spectrometry, computational biology, genomics, and developmental genetics, to characterize a ribosome code to gene expression. Our research has shown that not all of the millions of ribosomes within a cell are the same and that ribosome heterogeneity can diversify how genomes are translated into proteomes. In particular, we seek to address whether fundamental aspects of gene regulation are controlled by ribosomes harboring a unique activity or composition that are tuned to translating specific transcripts by virtue of RNA regulatory elements embedded within their 5’UTRs. The second research effort is centered on employing state-of-the-art live cell imaging to visualize cell signaling and cellular control of organogenesis. This research has led to the realization of a novel means of cell-cell communication dependent on a dense network of actin-based cellular extension within developing organs that interconnect and facilitate the precise transmission of molecular information between cells. We apply and create bioengineering tools to manipulate such cellular interactions and signaling in-vivo.

  • Christopher O. Barnes

    Christopher O. Barnes

    Assistant Professor of Biology and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsResearch in our lab is aimed at defining the structural correlates of broad and potent antibody-mediated neutralization of viruses. We combine biophysical and structural methods (e.g., cryo-EM), protein engineering, and in vivo approaches to understand how enveloped viruses infect host cells and elicit antigen-specific immune responses. We are particularly interested in the co-evolution of HIV-1 and broadly-neutralizing IgG antibodies (bNAbs), which may hold the key to the development of an effective HIV-1 vaccine. In addition, we are investigating antibody responses to SARS-CoV-2 and related zoonotic coronaviruses (CoV), with the related goal of developing broadly-protective immunotherapies and vaccines against variants of concern and emerging CoV threats.

    HIV-1; SARS-CoV-2; coronaviruses; cryo-EM; crystallography; vaccines; directed evolution

  • Annelise E. Barron

    Annelise E. Barron

    Associate Professor of Bioengineering

    Current Research and Scholarly InterestsBiophysical mechanisms of host defense peptides (a.k.a. antimicrobial peptides) and their peptoid mimics; also, molecular and cellular biophysics of human innate immune responses.

  • Greg Barsh

    Greg Barsh

    Professor of Genetics and of Pediatrics, Emeritus

    Current Research and Scholarly InterestsGenetics of color variation

  • Michael Bassik

    Michael Bassik

    Associate Professor of Genetics

    Current Research and Scholarly InterestsWe are an interdisciplinary lab focused on two major areas:(1) we seek to understand mechanisms of cancer growth and drug resistance in order to find new therapeutic targets(2) we study mechanisms by which macrophages and other cells take up diverse materials by endocytosis and phagocytosis; these substrates range from bacteria, viruses, and cancer cells to drugs and protein toxins. To accomplish these goals, we develop and use new technologies for high-throughput functional genomics.

  • Glaivy Batsuli, MD

    Glaivy Batsuli, MD

    Assistant Professor of Pediatrics (Hematology/Oncology)

    Current Research and Scholarly InterestsHemophilia is a rare inherited X-linked bleeding disorder characterized by the deficiency of blood clotting proteins factor VIII or factor IX. These individuals are at risk for spontaneous bleeds and trauma or surgery-induced bleeding. There have been remarkable advancements in the management of hemophilia to prevent these bleeding episodes and improve quality of life. However, the presence of neutralizing antibodies, called inhibitors, still dictates access to novel therapies such as factor replacement for bleed management and now FDA-approved gene therapies. The Batsuli Lab is focused on elucidating mechanisms of the immune response to blood coagulation proteins in bleeding disorders in order to develop strategies and therapeutics for inhibitor prevention and tolerance induction.

    Dr. Batsuli's clinical research interests also include clinical trial participation for novel therapeutics & interventions in bleeding disorders such as hemophilia and von Willebrand disease in addition to coagulation issues & outcomes in ultra-rare bleeding disorders and sickle cell disease.

  • Fiona Baumer

    Fiona Baumer

    Assistant Professor of Neurology (Pediatric Neurology) and of Pediatrics

    Current Research and Scholarly InterestsCauses of Disturbed Cognition in Pediatric Epilepsy

  • Mohsen Bayati

    Mohsen Bayati

    Professor of Operations, Information and Technology at the Graduate School of Business and, by courtesy, of Electrical Engineering

    Current Research and Scholarly Interests1) Healthcare management: I am interested in improving healthcare delivery using data-driven modeling and decision-making.

    2) Network models and message-passing algorithms: I work on graphical modeling ideas motivated from statistical physics and their applications in statistical inference.

    3) Personalized decision-making: I work on machine learning and statistical challenges of personalized decision-making. The problems that I have worked on are primarily motivated by healthcare applications.

  • Philip Beachy

    Philip Beachy

    The Ernest and Amelia Gallo Professor, Professor of Urology, of Developmental Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsFunction of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.