Bio-X


Showing 11-20 of 53 Results

  • David Katzenstein

    David Katzenstein

    Current Research and Scholarly InterestsTreatment and evaluation of HIV infectionin the United States and Europe through the AIDS Clinical Trials Group (ACTG). International HIV pathogenesis work includes studies in Zimbabwe, South Africa, and India where we are particularly interested in the pandemic of subtype C HIV-1, TB and other co-infections. The lab currently is focused on drug resistance, envelope tropism and the pathogenesis of HIV.

  • Laurence Katznelson, MD

    Laurence Katznelson, MD

    Professor of Neurosurgery and of Medicine (Endocrinology)

    Current Research and Scholarly InterestsDr. Katznelson is an internationally known neuroendocrinologist and clinical researcher, with research expertise in the diagnosis and management of hypopituitarism, the effects of hormones on neurocognitive function, and the development of therapeutics for acromegaly and Cushing’s syndrome, and neuroendocrine tumors. Dr. Katznelson is the medical director of the multidisciplinary Stanford Pituitary Center, a program geared for patient management, clinical research and patient education

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor of Pediatrics, and Professor of Genetics

    Current Research and Scholarly InterestsMark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Electron Kebebew, MD, FACS

    Electron Kebebew, MD, FACS

    Harry A. Oberhelman, Jr. and Mark L. Welton Professor

    Current Research and Scholarly InterestsDr. Kebebew’s translational and clinical investigations have three main scientific goals: 1) to develop effective therapies for fatal, rare and neglected endocrine cancers, 2) to identify new methods, strategies and technologies for improving the diagnosis and treatment of endocrine neoplasms and the prognostication of endocrine cancers, and 3) to develop methods for precision treatment of endocrine tumors.

  • Corey Keller, MD, PhD

    Corey Keller, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    Current Research and Scholarly InterestsThe goal of my lab is to understand the fundamental principles of human brain plasticity and build trans-diagnostic real-time monitoring platforms for personalized neurotherapeutics.

    We use an array of neuroscience methods to better understand the basic principles of how to create change in brain circuits. We use this knowledge to develop more effective treatment strategies for depression and other psychiatric disorders.

  • Monroe Kennedy III

    Monroe Kennedy III

    Assistant Professor of Mechanical Engineering and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsMy research focus is to develop technology that improves everyday life by anticipating and acting on the needs of human counterparts. My research can be divided into the following sub-categories: robotic assistants, connected devices and intelligent wearables. My Assistive Robotics and Manipulation lab focuses heavily on both the analytical and experimental components of assistive technology design.

  • Thomas Kenny

    Thomas Kenny

    Richard W. Weiland Professor in the School of Engineering
    On Partial Leave from 10/01/2020 To 02/14/2022

    BioKenny's group is researching fundamental issues and applications of micromechanical structures. These devices are usually fabricated from silicon wafers using integrated circuit fabrication tools. Using these techniques, the group builds sensitive accelerometers, infrared detectors, and force-sensing cantilevers. This research has many applications, including integrated packaging, inertial navigation, fundamental force measurements, experiments on bio-molecules, device cooling, bio-analytical instruments, and small robots. Because this research field is multidisciplinary in nature, work in this group is characterized by strong collaborations with other departments, as well as with local industry.

  • Oussama Khatib

    Oussama Khatib

    Weichai Professor and Professor, by courtesy, of Mechanical Engineering and of Electrical Engineering

    BioRobotics research on novel control architectures, algorithms, sensing, and human-friendly designs for advanced capabilities in complex environments. With a focus on enabling robots to interact cooperatively and safely with humans and the physical world, these studies bring understanding of human movements for therapy, athletic training, and performance enhancement. Our work on understanding human cognitive task representation and physical skills is enabling transfer for increased robot autonomy. With these core capabilities, we are exploring applications in healthcare and wellness, industry and service, farms and smart cities, and dangerous and unreachable settings -- deep in oceans, mines, and space.

  • Paul A. Khavari, MD, PhD

    Paul A. Khavari, MD, PhD

    Carl J. Herzog Professor of Dermatology in the School of Medicine

    Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.