Institute for Human-Centered Artificial Intelligence (HAI)


Showing 11-20 of 24 Results

  • Michael Bernstein

    Michael Bernstein

    Associate Professor of Computer Science

    BioMichael Bernstein is an Associate Professor of Computer Science at Stanford University, where he is a Bass University Fellow and Interim Director of the Symbolic Systems program. His research focuses on designing social, societal, and interactive technologies. This research has been reported in venues such as The New York Times, Wired, Science, and Nature. Michael has been recognized with an Alfred P. Sloan Fellowship, the UIST Lasting Impact Award, and the Computer History Museum's Patrick J. McGovern Tech for Humanity Prize. He holds a bachelor's degree in Symbolic Systems from Stanford University, as well as a master's degree and a Ph.D. in Computer Science from MIT.

  • Vasiliki (Vicky) Bikia

    Vasiliki (Vicky) Bikia

    Postdoctoral Scholar, Biomedical Informatics

    BioDr. Vasiliki Bikia is a Fellow at the Institute for Human-Centered Artificial Intelligence and Postdoctoral Scholar at Stanford University, working with Prof. Roxana Daneshjou. She received her Advanced Diploma degree in Electrical and Computer Engineering from the Aristotle University of Thessaloniki (AUTH), Greece, in 2017, and her Ph.D. degree in Biomedical Engineering from the Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland, in 2021. Her Ph.D. research addressed the clinical need for providing non-invasive tools for cardiovascular monitoring leveraging machine learning and physics-based numerical modeling.

    Her current work focuses on developing large multimodal models to enhance biomarker identification and patient outcome prediction. At Stanford, she has also contributed to the Stanford Spezi framework, designing and prototyping the Spezi Data Pipeline tool for enhanced digital health data accessibility and analysis workflows. Her research interests include health algorithms, clinical and digital biomarkers, machine learning, non-invasive monitoring, and the application of large language models for personalized healthcare, predictive analytics, and enhancing patient-clinician interactions.

  • Jo Boaler

    Jo Boaler

    Nomellini and Olivier Professor in the Graduate School of Education

    Current Research and Scholarly InterestsStudying the Impact of a Mathematical Mindset Summer Intervention, HapCaps: Design and Validation of Haptic Devices for improving Finger Perception (with engineering & neuroscience) The effectiveness of a student online class (https://lagunita.stanford.edu/courses/Education/EDUC115-S/Spring2014/about) (NSF). Studies on mathematics and mindset with Carol Dweck and Greg Walton (various funders). Studying an online network and it's impact on teaching and learning (Gates foundation)

  • Jeannette Bohg

    Jeannette Bohg

    Assistant Professor of Computer Science

    BioJeannette Bohg is an Assistant Professor of Computer Science at Stanford University. She was a group leader at the Autonomous Motion Department (AMD) of the MPI for Intelligent Systems until September 2017. Before joining AMD in January 2012, Jeannette Bohg was a PhD student at the Division of Robotics, Perception and Learning (RPL) at KTH in Stockholm. In her thesis, she proposed novel methods towards multi-modal scene understanding for robotic grasping. She also studied at Chalmers in Gothenburg and at the Technical University in Dresden where she received her Master in Art and Technology and her Diploma in Computer Science, respectively. Her research focuses on perception and learning for autonomous robotic manipulation and grasping. She is specifically interesting in developing methods that are goal-directed, real-time and multi-modal such that they can provide meaningful feedback for execution and learning. Jeannette Bohg has received several awards, most notably the 2019 IEEE International Conference on Robotics and Automation (ICRA) Best Paper Award, the 2019 IEEE Robotics and Automation Society Early Career Award and the 2017 IEEE Robotics and Automation Letters (RA-L) Best Paper Award.

  • Stephen Boyd

    Stephen Boyd

    Samsung Professor in the School of Engineering

    BioStephen P. Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering in the Information Systems Laboratory at Stanford University, and a member of the Institute for Computational and Mathematical Engineering. His current research focus is on convex optimization applications in control, signal processing, machine learning, and finance.

    Professor Boyd received an AB degree in Mathematics, summa cum laude, from Harvard University in 1980, and a PhD in EECS from U. C. Berkeley in 1985. In 1985 he joined Stanford's Electrical Engineering Department. He has held visiting Professor positions at Katholieke University (Leuven), McGill University (Montreal), Ecole Polytechnique Federale (Lausanne), Tsinghua University (Beijing), Universite Paul Sabatier (Toulouse), Royal Institute of Technology (Stockholm), Kyoto University, Harbin Institute of Technology, NYU, MIT, UC Berkeley, CUHK-Shenzhen, and IMT Lucca. He holds honorary doctorates from Royal Institute of Technology (KTH), Stockholm, and Catholic University of Louvain (UCL).

    Professor Boyd is the author of many research articles and four books: Introduction to Applied Linear Algebra: Vectors, Matrices, and Least-Squares (with Lieven Vandenberghe, 2018), Convex Optimization (with Lieven Vandenberghe, 2004), Linear Matrix Inequalities in System and Control Theory (with El Ghaoui, Feron, and Balakrishnan, 1994), and Linear Controller Design: Limits of Performance (with Craig Barratt, 1991). His group has produced many open source tools, including CVX (with Michael Grant), CVXPY (with Steven Diamond) and Convex.jl (with Madeleine Udell and others), widely used parser-solvers for convex optimization.

    He has received many awards and honors for his research in control systems engineering and optimization, including an ONR Young Investigator Award, a Presidential Young Investigator Award, and the AACC Donald P. Eckman Award. In 2013, he received the IEEE Control Systems Award, given for outstanding contributions to control systems engineering, science, or technology. In 2012, Michael Grant and he were given the Mathematical Optimization Society's Beale-Orchard-Hays Award, for excellence in computational mathematical programming. In 2023, he was given the AACC Richard E. Bellman Control Heritage Award, the highest recognition of professional achievement for U.S. control systems engineers and scientists. He is a Fellow of the IEEE, SIAM, INFORMS, and IFAC, a Distinguished Lecturer of the IEEE Control Systems Society, a member of the US National Academy of Engineering, a foreign member of the Chinese Academy of Engineering, and a foreign member of the National Academy of Engineering of Korea. He has been invited to deliver more than 90 plenary and keynote lectures at major conferences in control, optimization, signal processing, and machine learning.

    He has developed and taught many undergraduate and graduate courses, including Signals & Systems, Linear Dynamical Systems, Convex Optimization, and a recent undergraduate course on Matrix Methods. His graduate convex optimization course attracts around 300 students from more than 20 departments. In 1991 he received an ASSU Graduate Teaching Award, and in 1994 he received the Perrin Award for Outstanding Undergraduate Teaching in the School of Engineering. In 2003, he received the AACC Ragazzini Education award, for contributions to control education. In 2016 he received the Walter J. Gores award, the highest award for teaching at Stanford University. In 2017 he received the IEEE James H. Mulligan, Jr. Education Medal, for a career of outstanding contributions to education in the fields of interest of IEEE, with citation "For inspirational education of students and researchers in the theory and application of optimization."