Wu Tsai Human Performance Alliance
Showing 11-19 of 19 Results
-
Helen M. Blau
Donald E. and Delia B. Baxter Foundation Professor, Director, Baxter Laboratory for Stem Cell Biology and Professor, by courtesy, of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsProf. Helen Blau's research area is regenerative medicine with a focus on stem cells. Her research on nuclear reprogramming and demonstrating the plasticity of cell fate using cell fusion is well known and her laboratory has also pioneered the design of biomaterials to mimic the in vivo microenvironment and direct stem cell fate. Current findings are leading to more efficient iPS generation, cell based therapies by dedifferentiation a la newts, and discovery of novel molecules and therapies.
-
Barbara Block
Charles and Elizabeth Prothro Professor of Marine Sciences, Professor of Oceans and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsThermal physiology, open ocean predators, ecological physiology and tuna biology
-
Mark Brongersma
Stephen Harris Professor and Professor of Materials Science and Engineering and, by courtesy, of Applied Physics
BioMark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD in Materials Science from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. During this time, he coined the term “Plasmonics” for a new device technology that exploits the unique optical properties of nanoscale metallic structures to route and manipulate light at the nanoscale. His current research is directed towards the development and physical analysis of nanostructured materials that find application in nanoscale electronic and photonic devices. Brongersma received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the Optical Society of America, the SPIE, and the American Physical Society.
-
Helen Bronte-Stewart, MD, MS
John E. Cahill Family Professor, Professor of Neurology and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsMy research focus is human motor control and brain pathophysiology in movement disorders. Our overall goal is to understand the role of the basal ganglia electrical activity in the pathogenesis of movement disorders. We have developed novel computerized technology to measure fine, limb and postural movement. With these we are measuring local field potentials in basal ganglia nuclei in patients with Parkinson's disease and dystonian and correlating brain signalling with motor behavior.
-
Vivek P. Buch, MD
Assistant Professor of Neurosurgery
BioDr. Buch is a neurosurgeon with fellowship training in epilepsy, functional, and minimally invasive neurosurgery. He is a clinical assistant professor in the Department of Neurosurgery of Stanford University School of Medicine.
Dr. Buch focuses his expertise on the open and minimally invasive treatment of epilepsy, low grade brain tumors, movement and neuropsychiatric disorders, facial and body pain syndromes, and other complex neurological conditions. He uses advanced and innovative techniques to treat both adult and pediatric patients. For each patient, he develops a personalized care plan that is designed to be both comprehensive and compassionate.
Dr. Buch has conducted extensive research. His interests include restorative network engineering for intellectual and cognitive disability, personalized network-targeting for deep brain stimulation and MRI guided focused ultrasound, and focused ultrasound-mediated delivery mechanisms for gene, stem cell, and molecular therapies. He also is developing technological innovations such as the use of holographic mixed reality and artificial intelligence for visualization and guidance to improve minimally invasive neurosurgical procedures.
He has co-authored articles on his research discoveries in the Annals of Surgery, Frontiers in Neuroscience, Epilepsia, Stereotactic and Functional Neurosurgery, Surgical Innovation, Journal of Neurosurgery, and many other journals. Articles focus on developing novel network control theory applications to human brain functions and new techniques and technologies to enhance neurosurgical effectiveness and patient outcomes.
He is a contributor to the journals Surgical Innovation and Brain Sciences. He also has co-authored chapters in the books Neurosurgical Atlas, Operative Techniques in Epilepsy Surgery, Deep Brain Stimulation, and The Encyclopedia of Medical Robotics.
Dr. Buch has presented the findings of his research at the national conferences of numerous professional associations. Among them are the American Association of Neurological Surgeons, Society for Neuroscience, Congress of Neurological Surgeons, and Society for Imaging Informatics in Medicine. Topics include understanding network mechanisms of cognitive control and advances in the use of augmented reality technology to enhance neurosurgical approaches.
For his clinical, research, and academic achievements. Dr. Buch has earned many honors. He has won awards from the American Association of Neurological Surgeons, American Roentgen Ray Society, Congress of Neurological Surgeons, and National Institutes of Health.
Dr. Buch is a member of the American Association of Neurological Surgeons, Congress of Neurological Surgeons, World Society for Stereotactic and Functional Neurosurgery, American Association of Stereotactic and Functional Neurosurgery, and Alpha Omega Alpha Medical Honor Society.
He holds patents on artificial intelligence systems designed to help guide surgery and on neural control signals for behavioral modification therapy. -
Marion S. Buckwalter, MD, PhD
Professor of Neurology and of Neurosurgery
Current Research and Scholarly InterestsThe goal of the Buckwalter Lab is to improve how people recover after a stroke. We use basic and clinical research to understand the cells, proteins, and genes that lead to successful recovery of function, and also how complications develop that impact quality of life after stroke. Ongoing projects are focused on understanding how inflammatory responses are regulated after a stroke and how they affect short-term brain injury and long term outcomes like dementia and depression.