Sarafan ChEM-H
Showing 201-207 of 207 Results
-
Paul Wender
Francis W. Bergstrom Professor and Professor, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsMolecular imaging, therapeutics, drug delivery, drug mode of action, synthesis
-
Albert Y. Wu, MD, PhD, FACS
Assistant Professor of Ophthalmology
Current Research and Scholarly InterestsMy translational research focuses on using autologous stem cells to recreate a patient’s ocular tissues for potential transplantation. We are generating tissue from induced pluripotent stem cells to treat limbal stem cell deficiency in patients who are bilaterally blind. By applying my background in molecular and cellular biology, stem cell biology, oculoplastic surgery, I hope to make regenerative medicine a reality for those suffering from orbital and ocular disease.
-
Joseph C. Wu, MD, PhD
Director, Stanford Cardiovascular Institute, Simon H. Stertzer, MD, Professor and Professor of Radiology
Current Research and Scholarly InterestsDrug discovery, drug screening, and disease modeling using iPSC.
-
Priscilla Li-ning Yang
Professor of Microbiology and Immunology
Current Research and Scholarly InterestsWe apply chemical biology approaches to study fundamental virological processes and to develop antivirals with novel mechanisms of action.
-
Ellen Yeh
Associate Professor of Pathology and of Microbiology and Immunology
Current Research and Scholarly InterestsThe chemistry and biology of the unusual plastid organelle, the apicoplast, in malaria parasites
-
J. Bradley Zuchero
Assistant Professor of Neurosurgery
Current Research and Scholarly InterestsGlia are a frontier of neuroscience, and overwhelming evidence from the last decade shows that they are essential regulators of all aspects of the nervous system. The Zuchero Lab aims to uncover how glial cells regulate neural development and how their dysfunction contributes to diseases like multiple sclerosis (MS) and in injuries like stroke.
Although glia represent more than half of the cells in the human brain, fundamental questions remain to be answered. How do glia develop their highly specialized morphologies and interact with neurons to powerfully control form and function of the nervous system? How is this disrupted in neurodegenerative diseases and after injury? By bringing cutting-edge cell biology techniques to the study of glia, we aim to uncover how glia help sculpt and regulate the nervous system and test their potential as novel, untapped therapeutic targets for disease and injury.
We are particularly interested in myelin, the insulating sheath around neuronal axons that is lost in diseases like MS. How do oligodendrocytes- the glial cell that produces myelin in the central nervous system- form and remodel myelin, and why do they fail to regenerate myelin in disease? Our current projects aim to use cell biology and neuroscience approaches to answer these fundamental questions. Ultimately we hope our work will lead to much-needed therapies to promote remyelination in patients.